Композиция для производства пористого заполнителя Российский патент 2017 года по МПК C04B14/24 C04B20/06 C04B38/00 

Описание патента на изобретение RU2622060C1

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок.

Известна композиция для получения керамзита (пористого заполнителя) состава, мас.%: отходы флотации углеобогащения - 60, модифицированное жидкое стекло - 40 / Денисов Д.Ю. Использование отходов флотации углеобогащения в производстве керамзита / Д.Ю. Денисов, И.В. Ковков, В.З. Абдрахимов // Башкирский химический журнал. - 2008. - Том 15. - №2. - С. 107-109/.

Недостатком указанного состава керамической массы является относительно низкая прочность 1,7-1,9 МПа.

Известна композиция для получения водостойкого пористого заполнителя состава, мас.%: натриевое жидкое стекло - 50-70, хлорид натрия - 1-3, горелые породы с содержанием глинистой составляющей не менее 50% и потери при прокаливании не менее 16% - 22-49 /Патент №2481286 Российская Федерация, МПК С04В 14/24. Композиция для производства водостойкого пористого заполнителя /Абдрахимов В.З., Семенычев В.К., Абдрахимова Е.С., Вдовина Е.В.; заявитель и патентообладатель Самарская академия государственного и муниципального управления; заявлено 29.06.2011; опубл. 10.05.2013. Бюл. 13.

Недостатком указанного состава являются относительно низкие прочность при сжатии (2,0-2,12 МПа) и коэффициент размягчения (93-94).

Данное техническое решение принято за прототип.

Техническим результатом является повышение прочности при сжатии и коэффициента размягчения пористого заполнителя.

Указанный технический результат достигается тем, что в композицию для получения водостойкого пористого заполнителя, включающую натриевое жидкое стекло плотностью 1,41 г/см3, хлористый натрий, размолотый до размера менее 0,3 мм, и горелые породы, размолотые до прохода через сито 0,14 мм, дополнительно вводят микрокремнезем от производства ферросилиция и ферросплавов со среднем размером частиц не более 0,25 мкм с содержанием оксидов, мас.%: SiO2 - 97,8; СаО - 1,3; MgO - 0,4; R2O - 0,5 при следующем соотношении компонентов, мас.%:

натриевое жидкое стекло плотностью 1,41 г/см3 50-75 хлорид натрия, размолотый до размера менее 0,3 мм 1-3 горелые породы 12-34 микрокремнезем от производства ферросилиция и ферросплавов 10-15

Микрокремнезем является техногенным сырьевым материалом от производства ферросилиция и ферросплавов. Удельная поверхность микрокремнезема находится в пределах от 40000 до 60000 см2/г, средний размер частиц не более 0,25 мкм (25⋅10-8 м). Микрокремнезем имеет низкий ТКЛР (температурный коэффициент линейного расширения) - 0,5⋅10-6°С-1, что повысит термостойкость пористых материалов.

Микрокремнезем от производства ферросилиция и ферросплавов представляет собой ультрадисперсный материал, состоящий из частиц сферической формы, получаемой в процессе газоочистки печей при производстве кремнийсодержащих сплавов. Основным компонентом материала является диоксид кремния аморфной модификации. Химический состав микрокремнезема от производства ферросилиция и ферросплавов представлен в таблице 1.

Горелые породы, образовавшиеся после самовозгорания горючих сланцев, использовались в качестве тонкомолотого наполнителя для получения водостойкого пористого заполнителя. Образуются горелые породы в местах добычи сланцев. Сланец, который не удалось в процессе добычи отделить от пустой породы, направляется в отвал. В терриконах при совместном хранении пустых пород и сланцев за счет повышенного количества в смешанных отвальных массах органических соединений происходит самовозгорание, которое приводит к образованию большого количества отходов – горелых пород. Горелые породы представляют собой продукт низкотемпературного обжига при самовозгорании породы (смесь глины и сланцев) в терриконах в окислительной среде. Количество горелых пород в терриконах составляет от 75 до 90% от объема отвала. Химический состав горелых пород, образовавшихся после самовозгорания горючих сланцев, представлен в таблице 1.

Горелые породы, в отличие от глинистых компонентов, хотя и содержат более 50% глинистых минералов, но не обладают пластичностью и связующей способностью.

1) В качестве жидкого стекла (связующего) использовалось товарное натриевое жидкое стекло плотностью 1,41 г/см3 (см. ГОСТ 13075-81).

2) В качестве добавки-коагулятора использовался хлорид натрия (ГОСТ 13830-97, производства ОАО «Бассоль»), размолотый до размера менее 0,3 мм.

3) В качестве тонкомолотых компонентов – горелые породы и микрокремнезем от производства ферросилиция и ферросплавов, размолотые до прохода через сито 0,14 мм.

Сведения, подтверждающие возможность осуществления изобретения. Композиции (таблица 2) для производства пористого заполнителя готовили путем тщательного перемешивания всех компонентов аналогично технологии, представленной в прототипе. Получение смеси производилось в мешалке принудительного действия в следующем порядке. Сначала в мешалку загружались тонкомолотые компоненты и хлорид натрия, которые тщательно перемешивались, затем в готовую сухую смесь при включенной мешалке заливалось натриевое стекло тонкой струйкой. Перемешивание производилось до получения однородной массы, но не менее 5 минут.

Полученная смесь системой ножей разрезалась на отдельные гранулы, которые термообрабатывались при 250-300°С в печном грануляторе, вспучиваясь при этом и образуя шарообразные высокопористые гранулы. Полученные гранулы помещались в электрическую печь, разогретую до температуры 790°С, и выдерживались там 10 минут. После изотермической выдержки гранулы охлаждались при скорости охлаждения 40°С/мин. Физико-механические показатели пористого заполнителя представлены в таблице 3.

Как видно из таблицы 3, пористые заполнители из предложенных составов имеют более высокие прочность на сжатие и коэффициент размягчения, чем прототип.

Техническое решение при использование микрокремнезема от производства ферросилиция и ферросплавов в предложенных составах позволяет повысить прочность на сжатие и коэффициент размягчения пористого заполнителя.

Использование техногенного сырья при получении пористого заполнителя способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов.

Похожие патенты RU2622060C1

название год авторы номер документа
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2015
  • Абдрахимов Владимир Закирович
  • Кайракбаев Аят Крымович
  • Хасаев Габибулла Рабаданович
RU2594238C1
Композиция для производства пористого заполнителя 2016
  • Абдрахимова Елена Сергеевна
RU2618244C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2015
  • Абдрахимова Елена Сергеевна
RU2589120C1
Композиция для производства пористого заполнителя 2016
  • Абдрахимова Елена Сергеевна
RU2614339C1
Композиция для производства пористого заполнителя 2016
  • Абдрахимова Елена Сергеевна
RU2615557C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ВОДОСТОЙКОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2011
  • Абдрахимов Владимир Закирович
  • Семёнычев Валерий Константинович
  • Абдрахимова Елена Сергеевна
  • Вдовина Елена Васильевна
RU2481286C2
КЕРАМИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ МАТЕРИАЛОВ 2015
  • Абдрахимова Елена Сергеевна
  • Абдрахимов Владимир Закирович
RU2613702C1
Композиция для производства пористого заполнителя 2017
  • Абдрахимова Елена Сергеевна
RU2649206C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2014
  • Абдрахимов Владимир Закирович
  • Абдрахимова Елена Сергеевна
RU2555171C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2014
  • Абдрахимова Елена Сергеевна
  • Абдрахимов Владимир Закирович
RU2575659C1

Реферат патента 2017 года Композиция для производства пористого заполнителя

Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, горелые породы, размолотые до прохода через сито 0,14 мм, 12-34, микрокремнезем от производства ферросилиция и ферросплавов со средним размером частиц не более 0,25 мкм и с содержанием оксидов, мас.%: SiO2 - 97,8; СаО - 1,3; MgO - 0,4; R2O - 0,5, 10-15. Технический результат – повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.

Формула изобретения RU 2 622 060 C1

Композиция для производства пористого заполнителя, включающая натриевое жидкое стекло плотностью 1,41 г/см3, хлорид натрия, размолотый до размера менее 0,3 мм и горелые породы, размолотые до прохода через сито 0,14 мм, дополнительно содержит микрокремнезем от производства ферросилиция и ферросплавов со средним размером частиц не более 0,25 мкм, с содержанием оксидов, мас.%: SiO2 - 97,8; СаО - 1,3; MgO - 0,4; R2O - 0,5 при следующем соотношении компонентов, мас.%:

натриевое жидкое стекло плотностью 1,41 г/см3 50-75 хлорид натрия, размолотый до размера менее 0,3 мм 1-3 горелые породы 12-34 микрокремнезем от производства ферросилиция и ферросплавов 10-15

Документы, цитированные в отчете о поиске Патент 2017 года RU2622060C1

КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ВОДОСТОЙКОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2011
  • Абдрахимов Владимир Закирович
  • Семёнычев Валерий Константинович
  • Абдрахимова Елена Сергеевна
  • Вдовина Елена Васильевна
RU2481286C2
СПОСОБ ИЗГОТОВЛЕНИЯ ПЕНОСИЛИКАТНОГО МАТЕРИАЛА 1996
  • Бржезанский В.О.
  • Молоков В.Ф.
  • Павшенко Ю.Н.
RU2111932C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ВОДОСТОЙКОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2011
  • Абдрахимов Владимир Закирович
RU2478084C2
Сырьевая смесь и способ получения гранулированного теплоизоляционного материала 2002
  • Радина Т.Н.
  • Иванов М.Ю.
RU2220928C1
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ 2014
  • Абдрахимов Владимир Закирович
  • Абдрахимова Елена Сергеевна
RU2555972C1
Устройство для преобразования кода 1986
  • Луцкий Георгий Михайлович
  • Блинова Татьяна Александровна
  • Дрофа Сергей Васильевич
  • Талаев Алексей Константинович
SU1367166A1

RU 2 622 060 C1

Авторы

Абдрахимова Елена Сергеевна

Абдрахимов Владимир Закирович

Даты

2017-06-09Публикация

2016-04-27Подача