Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок.
Известна композиция для получения керамзита (пористого заполнителя) состава, мас.%: отходы флотации углеобогащения - 60, модифицированное жидкое стекло - 40 / Денисов Д.Ю. Использование отходов флотации углеобогащения в производстве керамзита / Д.Ю. Денисов, И.В. Ковков, В.З. Абдрахимов // Башкирский химический журнал. - 2008. - Том 15. - №2. - С. 107-109/.
Недостатком указанного состава керамической массы является относительно низкая прочность 1,7-1,9 МПа.
Известна композиция для получения водостойкого пористого заполнителя состава, мас.%: натриевое жидкое стекло - 50-70, хлорид натрия - 1-3, горелые породы с содержанием глинистой составляющей не менее 50% и потери при прокаливании не менее 16% - 22-49 /Патент №2481286 Российская Федерация, МПК С04В 14/24. Композиция для производства водостойкого пористого заполнителя /Абдрахимов В.З., Семенычев В.К., Абдрахимова Е.С., Вдовина Е.В.; заявитель и патентообладатель Самарская академия государственного и муниципального управления; заявлено 29.06.2011; опубл. 10.05.2013. Бюл. 13.
Недостатком указанного состава являются относительно низкие прочность при сжатии (2,0-2,12 МПа) и коэффициент размягчения (93-94).
Данное техническое решение принято за прототип.
Техническим результатом является повышение прочности при сжатии и коэффициента размягчения пористого заполнителя.
Указанный технический результат достигается тем, что в композицию для получения водостойкого пористого заполнителя, включающую натриевое жидкое стекло плотностью 1,41 г/см3, хлористый натрий, размолотый до размера менее 0,3 мм, и горелые породы, размолотые до прохода через сито 0,14 мм, дополнительно вводят микрокремнезем от производства ферросилиция и ферросплавов со среднем размером частиц не более 0,25 мкм с содержанием оксидов, мас.%: SiO2 - 97,8; СаО - 1,3; MgO - 0,4; R2O - 0,5 при следующем соотношении компонентов, мас.%:
Микрокремнезем является техногенным сырьевым материалом от производства ферросилиция и ферросплавов. Удельная поверхность микрокремнезема находится в пределах от 40000 до 60000 см2/г, средний размер частиц не более 0,25 мкм (25⋅10-8 м). Микрокремнезем имеет низкий ТКЛР (температурный коэффициент линейного расширения) - 0,5⋅10-6°С-1, что повысит термостойкость пористых материалов.
Микрокремнезем от производства ферросилиция и ферросплавов представляет собой ультрадисперсный материал, состоящий из частиц сферической формы, получаемой в процессе газоочистки печей при производстве кремнийсодержащих сплавов. Основным компонентом материала является диоксид кремния аморфной модификации. Химический состав микрокремнезема от производства ферросилиция и ферросплавов представлен в таблице 1.
Горелые породы, образовавшиеся после самовозгорания горючих сланцев, использовались в качестве тонкомолотого наполнителя для получения водостойкого пористого заполнителя. Образуются горелые породы в местах добычи сланцев. Сланец, который не удалось в процессе добычи отделить от пустой породы, направляется в отвал. В терриконах при совместном хранении пустых пород и сланцев за счет повышенного количества в смешанных отвальных массах органических соединений происходит самовозгорание, которое приводит к образованию большого количества отходов – горелых пород. Горелые породы представляют собой продукт низкотемпературного обжига при самовозгорании породы (смесь глины и сланцев) в терриконах в окислительной среде. Количество горелых пород в терриконах составляет от 75 до 90% от объема отвала. Химический состав горелых пород, образовавшихся после самовозгорания горючих сланцев, представлен в таблице 1.
Горелые породы, в отличие от глинистых компонентов, хотя и содержат более 50% глинистых минералов, но не обладают пластичностью и связующей способностью.
1) В качестве жидкого стекла (связующего) использовалось товарное натриевое жидкое стекло плотностью 1,41 г/см3 (см. ГОСТ 13075-81).
2) В качестве добавки-коагулятора использовался хлорид натрия (ГОСТ 13830-97, производства ОАО «Бассоль»), размолотый до размера менее 0,3 мм.
3) В качестве тонкомолотых компонентов – горелые породы и микрокремнезем от производства ферросилиция и ферросплавов, размолотые до прохода через сито 0,14 мм.
Сведения, подтверждающие возможность осуществления изобретения. Композиции (таблица 2) для производства пористого заполнителя готовили путем тщательного перемешивания всех компонентов аналогично технологии, представленной в прототипе. Получение смеси производилось в мешалке принудительного действия в следующем порядке. Сначала в мешалку загружались тонкомолотые компоненты и хлорид натрия, которые тщательно перемешивались, затем в готовую сухую смесь при включенной мешалке заливалось натриевое стекло тонкой струйкой. Перемешивание производилось до получения однородной массы, но не менее 5 минут.
Полученная смесь системой ножей разрезалась на отдельные гранулы, которые термообрабатывались при 250-300°С в печном грануляторе, вспучиваясь при этом и образуя шарообразные высокопористые гранулы. Полученные гранулы помещались в электрическую печь, разогретую до температуры 790°С, и выдерживались там 10 минут. После изотермической выдержки гранулы охлаждались при скорости охлаждения 40°С/мин. Физико-механические показатели пористого заполнителя представлены в таблице 3.
Как видно из таблицы 3, пористые заполнители из предложенных составов имеют более высокие прочность на сжатие и коэффициент размягчения, чем прототип.
Техническое решение при использование микрокремнезема от производства ферросилиция и ферросплавов в предложенных составах позволяет повысить прочность на сжатие и коэффициент размягчения пористого заполнителя.
Использование техногенного сырья при получении пористого заполнителя способствует утилизации промышленных отходов, охране окружающей среды, расширению сырьевой базы для керамических материалов.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2015 |
|
RU2594238C1 |
Композиция для производства пористого заполнителя | 2016 |
|
RU2618244C1 |
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2015 |
|
RU2589120C1 |
Композиция для производства пористого заполнителя | 2016 |
|
RU2614339C1 |
Композиция для производства пористого заполнителя | 2016 |
|
RU2615557C1 |
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ВОДОСТОЙКОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2011 |
|
RU2481286C2 |
КЕРАМИЧЕСКАЯ КОМПОЗИЦИЯ ДЛЯ ИЗГОТОВЛЕНИЯ СТЕНОВЫХ МАТЕРИАЛОВ | 2015 |
|
RU2613702C1 |
Композиция для производства пористого заполнителя | 2017 |
|
RU2649206C1 |
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2014 |
|
RU2555171C1 |
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2014 |
|
RU2575659C1 |
Изобретение относится к области производства строительных материалов, в частности к производству пористых заполнителей на основе жидкого стекла, предназначенных для изготовления легких бетонов, а также теплоизоляционных засыпок. Композиция для производства пористого заполнителя включает, мас.%: натриевое жидкое стекло плотностью 1,41 г/см3 50-75, хлорид натрия, размолотый до размера менее 0,3 мм, 1-3, горелые породы, размолотые до прохода через сито 0,14 мм, 12-34, микрокремнезем от производства ферросилиция и ферросплавов со средним размером частиц не более 0,25 мкм и с содержанием оксидов, мас.%: SiO2 - 97,8; СаО - 1,3; MgO - 0,4; R2O - 0,5, 10-15. Технический результат – повышение прочности при сжатии и коэффициента размягчения пористого заполнителя, утилизация промышленных отходов. 3 табл.
Композиция для производства пористого заполнителя, включающая натриевое жидкое стекло плотностью 1,41 г/см3, хлорид натрия, размолотый до размера менее 0,3 мм и горелые породы, размолотые до прохода через сито 0,14 мм, дополнительно содержит микрокремнезем от производства ферросилиция и ферросплавов со средним размером частиц не более 0,25 мкм, с содержанием оксидов, мас.%: SiO2 - 97,8; СаО - 1,3; MgO - 0,4; R2O - 0,5 при следующем соотношении компонентов, мас.%:
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ВОДОСТОЙКОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2011 |
|
RU2481286C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ПЕНОСИЛИКАТНОГО МАТЕРИАЛА | 1996 |
|
RU2111932C1 |
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ВОДОСТОЙКОГО ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2011 |
|
RU2478084C2 |
Сырьевая смесь и способ получения гранулированного теплоизоляционного материала | 2002 |
|
RU2220928C1 |
КОМПОЗИЦИЯ ДЛЯ ПРОИЗВОДСТВА ПОРИСТОГО ЗАПОЛНИТЕЛЯ | 2014 |
|
RU2555972C1 |
Устройство для преобразования кода | 1986 |
|
SU1367166A1 |
Авторы
Даты
2017-06-09—Публикация
2016-04-27—Подача