Способ получения импрегнированного сорбента Российский патент 2017 года по МПК B01J20/20 B01J20/26 B01J20/30 

Описание патента на изобретение RU2622120C1

Изобретение относится к области производства сорбционно-активных материалов, которые могут быть использованы в процессах гидрометаллургии, а также для решения задач очистки сточных вод от тяжелых металлов.

Известен способ получения углеродно-минерального сорбента, включающий смешение цеолита, активного угля, бинтонитовой глины и диоксида марганца до образования однородной пасты, ее грануляцию и термообработку при 600-750°C с последующей пропиткой термообработанных гранул водной суспензией фенолформальдегидной смолы марки СФ 432-А, вылеживание гранул с последующим прокаливанием при температуре 750°C в потоке диоксида углерода в течение 60 мин (см. пат. РФ №2122893, кл. B01J 20/16, 18, 20, B01J 23/32, опубл. 10.12.1998 г.).

Недостатком известного способа является сложность осуществления технологического процесса и значительный объем в составе сорбента различных ингредиентов.

Наиболее близким к предложенному по технической сущности и количеству совпадающих признаков является способ получения импрегнированного сорбента-катализатора, включающий приготовление пропиточного раствора, пропитку зерен основы - активного угля с суммарным объемом пор 0,9-1,2 см3/г, каталитическими добавками меди, хрома, серебра и ТЭДА, вылеживание и термообработку при температуре 80-110°C со скоростью подъема температуры 1-3°C в минуту (см. пат. РФ №2195365, кл. 13 01J 20/20, C01B 31/08).

Недостатком известного способа является низкая сорбционная активность получаемого сорбента по извлечению из сложного раствора редкоземельного элемента лантана.

Техническим результатом (целью изобретения) является повышение сорбционной активности сорбента по извлечению редкоземельного элемента лантана из растворов.

Поставленная цель достигается предлагаемым способом, включающим приготовление пропиточного раствора, импрегнирующей добавки, пропитку основы, вылеживание и термообработку, отличающимся тем, что в качестве основы используют ионно-обменную смолу с суммарным объемом пор 0,80-0,87 см3/г, а в качестве импрегнирующей добавки используют тонкоизмельченный активный уголь с размером микропор, имеющих полуширину 0,56-0,60 нм, а термообработку осуществляют при температуре 70-78°C.

Отличие предложенного способа от прототипа заключается в том, что в качестве основы используют ионно-обменную смолу с суммарным объемом пор 0,80-0,87 см3/г, а в качестве импрегнирующей добавки используют тонкоизмельченный активный уголь с размером микропор, имеющих полуширину 0,56-0,60 нм, а термообработку осуществляют при температуре 70-78°C.

Из научно-технической патентной литературы авторам неизвестен способ получения импрегнированного сорбента, где в качестве основы используют ионно-обменную смолу с суммарным объемом пор 0,80-0,87 см3/г, а в качестве импрегнирующей добавки используют тонкоизмельченный активный уголь с размером микропор, имеющих полуширину 0,56-0,60 нм, а термообработку осуществляют при температуре 70-78°C.

Сущность предлагаемого способа заключается в следующем. Ионно-обменные смолы имеют в своем составе функциональные группы, которые селективно извлекают из сложного раствора те или иные ионы металлов за счет обратимого химического взаимодействия. Однако, если извлекаемый металл, в нашем случае лантан, входит в состав органо-минерального комплекса, который безусловно присутствует в растворах подземного выщелачивания урана, то они функциональными группами ионно-обменной смолы не сорбируются. С другой стороны, такие комплексы эффективно сорбируются в микропористой структуре активного угля.

Поэтому получение сорбента, совмещающего ионно-обменную способность к лантану с его адсорбционным извлечением микропорами активного угля, позволяет суммарно существенно повысить сорбционную активность комбинированного сорбента по извлечению лантана из сложных растворов. При этом технологические параметры процесса и оптимизации пористой структуры активного угля могут быть только экспериментально. Способ осуществляется следующим образом.

Берут активный уголь БАУ-А (ГОСТ 6217-74) с размером микропор, имеющих полуширину 0,56-0,60 нм, и обладающий объемом микропор 0,21-0,24 см3/г и осуществляют его размол на мельнице «RESHT» до размеров частиц 3-5 мкм. Затем готовят пропиточный раствор, добавляя в дистиллированную воду тонкоразмолотый активный уголь (АУ) при постоянном перемешивании, обеспечивая весовое соотношение твердое: жидкое, равное 1:4. Затем берут ионообменную смолу (ИС) марки АМ-2Б (ОСТ 95.291-86) с размером гранул 0,63-1,60 мм, имеющую суммарный объем пор (VΣ), равный 0,80-0,87 см3/г, причем на долю макропор с размером более 2000 нм приходится 0,45-0,52 см3/г, и дозируют ее в пропиточный раствор при постоянном перемешивании, которое проводят в течение 20-40 мин с помощью механической мешалки. Импрегнированные таким образом гранулы выкладывают на противень и вылеживают в течение 1-2 часов, после чего подвергают обработке при 70-78°С, добиваясь полного испарения воды. Полученный импрегнированный сорбент тестируют на сорбционную активность по извлечению лантана из водного раствора. Сорбционную активность определяют по изменению концентрации лантана в растворе после 30 мин контакта при перемешивании: от исходной C0=20 мг/л до остаточной после 30 мин контакта. Полученный по предлагаемому способу импрегнированный сорбент имел сорбционную активность по лантану 120-140 мг/г.

Пример 1. Берут 100 г активного угля БАУ-А с размером микропор, имеющих полуширину 0,56 нм, и обладающего объемом микропор 0,21-0,24 см3/г и осуществляют его размол на мельнице «RESHT» до размеров частиц 3-5 мкм (3-5⋅10-6 м). Затем заливают в колбу 400 мл дистиллированной воды и добавляют туда при постоянном перемешивании 100 г тонкоразмолотого АУ, обеспечивая весовое соотношение твердое: жидкое, равное 1:4. Затем берут 700 г ионообменной смолы АМ-2Б, имеющей суммарный объем пор 0,80 см3/г, и дозируют ее в пропиточный раствор при постоянном перемешивании, которое проводят в течение 20-40 мин с помощью механической мешалки. Импрегнированные гранулы выкладывают на противень из нержавеющей стали и вылеживают в течение 1-2 часов, после чего подвергают термообработке в сушильном шкафу при 70°C до полного испарения воды, обеспечивая закрепление тонкоразмолотого АУ в макропорах ионообменной смолы. Полученный импрегнированный сорбент имел сорбционную активность по лантану 120 мг/г.

Пример 2. Осуществление процесса как в примере 1 за исключением того, что берут уголь БАУ-А с размером микропор, имеющих полуширину 0,60 нм, используют для пропитки смолу АМ-2Б с суммарным объемом пор 0,87 см3/г и термообработку проводят при температуре 78°C. Полученный импрегнированный сорбент имел сорбционную активность по лантану 132 мг/г.

Пример 3. Осуществление процесса как в примере 1 за исключением того, что берут активный уголь БАУ-А с размером микропор, имеющих полуширину 0,58 нм, используют для пропитки смолу АМ-2Б с суммарным объемом пор 0,85 см3/г и термообработку проводят при температуре 75°C. Полученный импрегнированный сорбент имел сорбционную активность по лантану 140 мг/г.

В аналогичных условиях испытания импрегнированный сорбент, полученный по известному способу (пат. РФ №2195365), имел сорбционную активность по лантану при извлечении его из водного раствора 56-70 мг/г.

Исследования, выполненные при разработке предлагаемого способа, позволили установить следующее. Если суммарный объем пор у ионообменной смолы ниже 0,80 см3/г, то значительная часть импрегнанта - тонкоразмолотого АУ осаждается на поверхности гранул смолы и экранирует ионообменные группы, а если VΣ у ионообменной смолы выше 0,87 см3/г, то ее прочность снижается и она измельчается в процессе перемешивания, что в обоих случаях снижает сорбционную активность импрегнированного сорбента.

В случае если микропоры АУ имеют размер с полушириной менее 0,56 нм, то они становятся недоступными для ионов лантана, а с другой стороны, если их размер имеет полуширину более 0,60 нм, то снижается адсорбционный потенциал микропор и в обоих случаях падает сорбционная активность импрегнированного сорбента.

Относительно температуры термообработки установлено, что если она ниже 70°C, то значительно увеличивается время термообработки, а также имеет место слабое закрепление импрегнанта - тонкоразмолотого АУ на поверхность макропор смолы, а если температура термообработки выше 78°C, происходит оплавление ионообменной смолы и также в обоих случаях снижается сорбционная активность импрегнированного сорбента.

Из изложенного следует, что каждый из признаков заявленной совокупности в большей или меньшей степени влияет на достижение заявленной цели, а вся совокупность является достаточной для характеристики заявленного технического решения.

Похожие патенты RU2622120C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ИМПРЕГНИРОВАННОГО СОРБЕНТА 2011
  • Мухин Виктор Михайлович
  • Соловьев Сергей Николаевич
  • Гутникова Маргарита Арсеновна
  • Ягодкин Иван Васильевич
  • Рубцов Петр Леонидович
RU2461420C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА-КАТАЛИЗАТОРА 2005
  • Сырычко Василий Владимирович
  • Кордиалик Всеволод Владиславович
  • Куликов Николай Константинович
  • Шевченко Александр Онуфриевич
  • Мухин Виктор Михайлович
  • Крайнова Ольга Леонтьевна
RU2281158C1
Способ получения закрепленного на активном угле гербицида 2020
  • Спиридонов Юрий Яковлевич
  • Мухин Виктор Михайлович
  • Глинушкин Алексей Павлович
RU2752319C1
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКОВОГО СОРБЕНТА 2014
  • Мухин Виктор Михайлович
  • Гутникова Маргарита Арсеновна
  • Соловьев Сергей Николаевич
  • Вагонов Сергей Николаевич
  • Захарова Зинаида Александровна
  • Ткачев Алексей Григорьевич
  • Гутников Сергей Иванович
RU2572144C1
СПОСОБ ПОЛУЧЕНИЯ ИМПРЕГНИРОВАННОГО ЭЛАСТИЧНОГО СОРБЕНТА 2014
  • Мухин Виктор Михайлович
  • Гарцман Израиль Иосифович
  • Гутникова Маргарита Арсеновна
  • Курилкин Александр Александрович
  • Гутников Сергей Иванович
  • Дубовицкая Светлана Владимировна
RU2568485C1
СПОСОБ ПОЛУЧЕНИЯ АКТИВНОГО УГЛЯ 2011
  • Мухин Виктор Михайлович
  • Киреев Сергей Георгиевич
  • Курилкин Александр Александрович
  • Кузнецова Елена Сергеевна
  • Данелия Наталья Викторовна
RU2471708C1
СПОСОБ ПОЛУЧЕНИЯ АДСОРБЕНТА 2003
  • Галкин Е.А.
  • Романов Ю.А.
  • Кузнецова Г.Д.
  • Лянг А.В.
  • Рябинин П.В.
  • Великий Е.М.
RU2228792C1
СПОСОБ ПОЛУЧЕНИЯ ХЕМОСОРБЕНТА 2012
  • Мухин Виктор Михайлович
  • Соловьев Сергей Николаевич
  • Гарцман Израиль Иосифович
  • Гутникова Маргарита Арсеновна
  • Гутников Сергей Иванович
  • Кузнецова Елена Сергеевна
RU2510868C1
ПОГЛОТИТЕЛЬ АММИАКА И СЕРОВОДОРОДА И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2002
  • Галкин Е.А.
  • Алифанова Н.Н.
  • Фарберова Е.А.
  • Великий Е.М.
RU2210429C1
СПОСОБ ПОЛУЧЕНИЯ ИМПРЕГНИРОВАННОГО АДСОРБЕНТА 1998
  • Мухин В.М.
  • Зубова И.Д.
  • Спиридонов Ю.Я.
  • Шестаков В.Г.
RU2133217C1

Реферат патента 2017 года Способ получения импрегнированного сорбента

Изобретение относится к области производства сорбционно-активных материалов. Предложен способ получения импрегнированного сорбента, включающий приготовление пропиточного раствора, импрегнирующей добавки, пропитку основы, вылеживание и термообработку. В качестве основы используют ионно-обменную смолу с суммарным объемом пор 0,80-0,87 см3/г. В качестве импрегнирующей добавки используют тонкоизмельченный активный уголь с размером микропор, имеющих полуширину 0,56-0,60 нм. Термообработку осуществляют при температуре 70-78°С. Изобретение позволяет получать импрегнированный сорбент для извлечения из водных растворов редкоземельного элемента лантана, имеющий сорбционную активность по лантану 120-140 мг/г. 3 пр.

Формула изобретения RU 2 622 120 C1

Способ получения импрегнированного сорбента, включающий приготовление пропиточного раствора, импрегнирующей добавки, пропитку основы, вылеживание и термообработку, отличающийся тем, что в качестве основы используют ионно-обменную смолу с суммарным объемом пор 0,80-0,87 см3/г, а в качестве импрегнирующей добавки используют тонкоизмельченный активный уголь с размером микропор, имеющих полуширину 0,56-0,60 нм, а термообработку осуществляют при температуре 70-78°C.

Документы, цитированные в отчете о поиске Патент 2017 года RU2622120C1

СПОСОБ ПОЛУЧЕНИЯ МОДИФИЦИРОВАННОГО АДСОРБЕНТА 1992
  • Ивахнюк Г.К.
  • Глухарев Н.Ф.
  • Филимонова Л.Н.
  • Левинсон В.Г.
  • Федоров Н.Ф.
  • Штабной В.А.
RU2071826C1
БАКТЕРИЦИДНАЯ ДОБАВКА ДЛЯ СОРБЕНТА И СОРБЕНТ ДЛЯ ОЧИСТКИ ВОДЫ 2002
  • Пименов А.В.
  • Митилинеос А.Г.
RU2221641C2
СПОСОБ ОЧИСТКИ ОТРАБОТАННОЙ ВОДЫ ОТ ИОНОВ ТЯЖЕЛЫХ МЕТАЛЛОВ В ПРОИЗВОДСТВЕ БАЛЛИСТИТНОГО ПОРОХА 2007
  • Овсов Юрий Федорович
  • Пономарева Ольга Станиславовна
  • Лунегова Любовь Леонидовна
  • Постников Валерий Семенович
  • Куценко Геннадий Васильевич
  • Шеврикуко Иван Дмитриевич
  • Федченко Николай Николаевич
  • Божья-Воля Николай Сергеевич
RU2339584C1
Способ обработки сорбента 1978
  • Ахмадеев Владимир Ярханович
  • Реус Лидия Алексеевна
  • Чибирева Надежда Васильевна
  • Трескова Нина Александровна
SU833307A1
СПОСОБ ИЗГОТОВЛЕНИЯ СОРБЕНТА-КАТАЛИЗАТОРА 2002
  • Мухин В.М.
  • Крайнова О.Л.
  • Чебыкин В.В.
  • Дворецкий Г.В.
  • Фролов Н.А.
RU2195365C1
US 20050150835 A1, 14.07.2005
WO 2005058482 A1, 30.06.2005
JP 0011226570 A, 24.08.1999.

RU 2 622 120 C1

Авторы

Тарасов Андрей Владимирович

Мухин Виктор Михайлович

Гедгагов Эдуард Измаилович

Воропаева Надежда Леонидовна

Даты

2017-06-13Публикация

2016-07-08Подача