СПОСОБ ПОЛУЧЕНИЯ НАНОУЛЬТРАДИСПЕРСНОГО ПОРОШКА ОКСИДА МЕТАЛЛА Российский патент 2016 года по МПК C01B13/20 B82B3/00 B82Y40/00 

Описание патента на изобретение RU2579632C1

Изобретение относится к области химической промышленности. Порошки оксидов металлов могут быть использованы в качестве электродных материалов, также для усовершенствования имеющихся свойств и получения новых, в частности в химической промышленности для увеличения каталитических свойств, в материаловедении для улучшения спекаемости композиционной керамики, в техники для производства стекол и эмали, применяются в сельском хозяйстве, в медицине, в металлургии, в электротехнике.

Известен способ получения наноразмерных частиц кобальтата лития, включающий использование в качестве реакционной среды расплавленной смеси хлоридов лития и кобальта, которые были обработаны сухим воздухом в течение 6-8 часов, либо путем его барботирования через расплав, либо созданием потока газа над расплавом с последующим охлаждением, растворением солевого плава в дистиллированной воде и фильтрацией (патент RU 2461668, МПК С30В 29/16: B82Y 40/00; 2012 г.).

Недостатком известного способа является трудоемкость процесса, использование высоких температур 600-700°С, наличие в конечном продукте примесей оксидов (Сo2О3 и Сo3О4).

Наиболее близким по технической сущности является способ получения наночастиц оксида металла, включающий обработку неорганической соли металла, выбранного из ряда: алюминий, кобальт, кальций, медь, магний, железо, в токе водяного пара при скорости его подачи 20-30 мл/мин и температуре 500-900°С (патент RU №2384522; МПК С01В 13/20; В82В 3/00; 2010 г.).

Недостаток данного способа является высокая температура получения (500-900°С).

Таким образом, перед авторами стояла задача - разработать способ получения наноульрадисперсного порошка оксида металла, обеспечивающего получение при более низких температурах частиц порошка с заранее заданной определенной морфологией.

Поставленная задача решена в способе получения наноультрадисперсного порошка оксида металла, включающего обработку исходной смеси, содержащей хлорид соответствующего металла, в токе водяного пара при повышенной температуре, в котором в исходную смесь, содержащую растворимый хлорид соответствующего металла, дополнительно вводят хлорид натрия при соотношении компонентов хлорид металла:хлорид натрия =1÷2:1 и обработку проводят при скорости подачи водяного пара 40-70 мл/мин и температуре 300-400°С.

В настоящее время из патентной и научно-технической литературы не известен способ получения наноультрадисперсного порошка оксида металла, в котором обработку неорганической растворимой соли соответствующего металла в парах водяного пара ведут в присутствии хлорида натрия, взятого в определенном отношении к соли.

Авторами предлагается простой и надежный способ получения наноультрадисперсных оксидов металла путем термогидролиза с использованием хлорида натрия в качестве барьера, препятствующего укрупнению частиц в процессе их получения. Предлагаемый метод не требует больших энергетических затрат и дорогостоящего аппаратного оформления. Сущность способа заключается в следующем. Растворимая соль хлорида соответствующего металла, смешанная с хлоридом натрия, под действием температуры и водяного пара подвергается термогидролизу, при этом использование растворимых хлоридов соответствующих металлов позволяет уносить продукт реакции (хлороводород) вместе с током газообразной воды и газа-носителя (воздух). При этом снижение температуры процесса не дает возможности получения частиц наноультрадисперсного размера. При низких температурах получаемые оксиды металла имеют более крупные размеры вследствие слипания частиц, при значительной выдержке и при ограничении времени синтеза происходит загрязнение целевого продукта вследствие не полного прохождения реакции. Введение хлорида натрия позволяет устранить недостаток слипания и роста частиц при длительной выдержке, то есть хлорид натрия в данном случае выступает в качестве своеобразного барьера. Перетирание в ступке высушенного порошка, полученного после смешения растворов хлоридов соответствующего металла и хлорида натрия, позволяет гомогенизировать полученную смесь. Использование хлорида натрия в качестве барьера обусловлено его химическими и физическими свойствами, а также его большой доступностью. Температура плавления хлорида натрия 800,8°С. Высокая температура плавления обуславливает в твердом состоянии отсутствие химического взаимодействия с хлоридами соответствующего металла в реакции термогидролиза, его растворимость в воде обеспечивает возможность полной очистки получаемого порошка оксида металла. В процессе термогидролиза, выделяющийся хлороводород является газообразным продуктом и улавливается в резервуар с холодной дистиллированной водой. Использование установки с замкнутым циклом позволяет избежать попадания следовых количеств хлороводорода в атмосферу. Для контроля реакции периодически измеряют электропроводность образующегося раствора НСl. После прекращения изменения электропроводности процесс останавливают. Далее порошок отмывают от хлорида натрия.

Предлагаемый способ получения оксида металла может быть осуществлен следующим образом. Сухой порошкообразный растворимый в воде хлорид соответствующего металла и хлорид натрия при соотношении компонентов хлорид металла:хлорид натрия=1÷2:1 предварительно растворяют в дистиллированной воде, после чего сливают растворы вместе и высушивают до образования сухого кристаллического осадка. Полученный кристаллический осадок для гомогенизации перетирают до однородной массы, после чего помещают в печь в кварцевом реакторе. Кварцевый реактор снабжен подводящими и отводящими трубками. Водяной пар подают со скоростью 40-70 мл/мин. Нагревают печь до температуры 300-400°С и выдерживают при этой температуре до полного прохождения реакции. Контроль полноты прохождения реакции проводят путем измерения электропроводности образующегося раствора соляной кислоты. Замкнутый цикл предохраняет от попаданий следовых количеств хлороводорода в атмосферу, поскольку газообразный продукт реакции улавливается в резервуар с холодной дистиллированной водой. При прекращении изменения электропроводности подачу водяного пара в кварцевый реактор прекращают и снижают температуру печи - до комнатной. После извлечения порошка из реактора проводят его отмывку от хлорида натрия дистиллированной водой. Отмывку прекращают при отсутствии качественной реакции на ион хлора.

Контроль проведения термогидролиза осуществляется с помощью измерения сопротивления соляной кислоты в дистиллированной воде. При завершении реакции сопротивление либо перестает изменяться, либо изменяется незначительно. Аттестацию и контроль размера частиц, составом и морфологией проводят с помощью рентгенофазового анализа и электронной микроскопии (фазовый состав).

Пример 1.

Берут 5 г хлорида меди и 7,5 г хлорида натрия в соотношении 1:1,5, растворяют в дистиллированной воде, затем смешивают и просушивают до сухого кристаллического осадка. Затем навески перемешивают в агатовой ступке в течение 30 мин до однородной массы и помещаются в кварцевую трубу. Кварцевую трубу помещают в печь, которую нагревают с произвольной скорость до 300°С, закрывают пробкой с проводящими и отводящими трубками и включают перистальтический насос для подачи водяного пара со скоростью 40 мл/мин. Контроль проводят измерением сопротивления НСl в дистиллированной воде. Процесс ведут в течение 4 ч. После чего печь отключают. Затем проводят промывку полученного порошка дистиллированной водой. Контроль чистоты продукта проводят проведением качественной реакцией на ион хлора. По данным рентгенофазового анализа получают однофазный оксид меди (II). Полученные частицы имеют эллипсовидную форму с размером зерен 100-200 нм (см. фиг. 1).

Пример 2.

5 г хлорида кобальта (II) и 10 г хлорида натрия в соотношениии 1:2 растворяют в дистиллированной воде, смешивают и просушивают до сухого кристаллического осадка. Затем навеску перемешивают в агатовой ступке в течение 30 мин и помещают в кварцевую трубу. Кварцевую трубу помещают в печь, которую нагревают с произвольной скоростью до 400°С, закрывают пробкой с проводящими и отводящими трубками и включают перистальтический насос для подачи водяного пара со скоростью 70 мл/мин. Контроль проводят измерением сопротивления НСl в дистиллированной воде. Процесс ведут в течение 5 ч. После чего печь отключают. Затем проводят промывку полученного порошка дистиллированной водой. Контроль чистоты продукта проводят проведением качественной реакцией на ион хлора. Затем проводят промывку полученного порошка дистиллированной водой. Контроль чистоты продукта проводят проведением качественной реакцией на ион хлора. По данным рентгенофазового анализа получают однофазный оксид кобальта (II). Полученные частицы имеют сферическую форму с размером зерен до 100 нм (см. фиг. 2).

Пример 3.

Берут 5 г хлорида олова (II) и 5 г хлорида натрия, растворяют в небольшом количестве дистиллированной воды и смешивают в соотношении 1:1 с раствором хлорида натрия. Затем полученный раствор просушивают до сухого кристаллического осадка и перемешивают в агатовой ступке в течение 30 мин до образования однородной массы и помещают в кварцевую трубу. Кварцевую трубу помещают в печь, которую нагревают с произвольной скоростью до 400°С, закрывают пробкой с проводящими и отводящими трубками и включают перистальтический насос для подачи водяного пара со скоростью 60 мл/мин. Контроль проводят измерением сопротивления НСl в дистиллированной воде. Процесс ведут в течение 5 ч. После чего печь отключают. Затем проводят промывку полученного порошка дистиллированной водой. Контроль чистоты продукта проводят проведением качественной реакцией на ион хлора. По данным рентгенофазового анализа получают однофазный оксид олова (II). Полученные частицы имеют форму прутков с шириной от 50-200 нм и длиной до нескольких мкм.

Таким образом, авторами предлагается простой и надежный способ получения наноультрадисперсного порошка оксида металла с использованием значительно более низких температур, обеспечивающий получение частиц определенной морфологии.

Похожие патенты RU2579632C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНОГО ОКСИДА МЕТАЛЛА НА ОСНОВЕ ЖЕЛЕЗА 2009
  • Васильев Виктор Георгиевич
  • Владимирова Елена Владимировна
  • Чистякова Татьяна Сергеевна
  • Носов Александр Павлович
  • Кожевников Виктор Леонидович
RU2424183C2
СПОСОБ ПОЛУЧЕНИЯ НАНОЧАСТИЦ ОКСИДА МЕТАЛЛА 2008
  • Васильев Виктор Георгиевич
  • Баженов Александр Валерьевич
  • Владимирова Елена Владимировна
  • Кожевников Виктор Леонидович
  • Носов Александр Павлович
  • Мохорт Екатерина Сергеевна
  • Чистякова Татьяна Сергеевна
RU2384522C1
СПОСОБ ПОЛУЧЕНИЯ НАНОДИСПЕРСНЫХ ПОРОШКОВ МЕТАЛЛОВ ИЛИ ИХ СПЛАВОВ 2012
  • Васильев Виктор Георгиевич
  • Владимирова Елена Владимировна
  • Карпова Татьяна Сергеевна
  • Носов Александр Павлович
  • Кожевников Виктор Леонидович
RU2509626C1
СПОСОБ НАНЕСЕНИЯ ПЛЕНКИ МЕТАЛЛА 2012
  • Васильев Виктор Георгиевич
  • Владимирова Елена Владимировна
  • Карпова Татьяна Сергеевна
  • Носов Александр Павлович
  • Кожевников Виктор Леонидович
RU2507309C1
СПОСОБ ДЕГАЛОГЕНИРОВАНИЯ ГАЛОГЕНСОДЕРЖАЩИХ ОРГАНИЧЕСКИХ ИЛИ ЭЛЕМЕНТООРГАНИЧЕСКИХ СОЕДИНЕНИЙ 1993
  • Щепинов С.А.
  • Швецов Ю.А.
  • Кожинская М.В.
RU2068719C1
СПОСОБ ПОЛУЧЕНИЯ ПЛЕНОК НА ОСНОВЕ ПРОСТЫХ ИЛИ СЛОЖНЫХ ОКСИДОВ ИЛИ ИХ ТВЕРДЫХ РАСТВОРОВ 2005
  • Васильев Виктор Георгиевич
  • Владимирова Елена Владимировна
  • Носов Александр Павлович
  • Кожевников Виктор Леонидович
RU2309892C2
Способ получения активированного порошка металлического иридия 2020
  • Банных Денис Андреевич
  • Голосов Михаил Алексеевич
  • Лозанов Виктор Васильевич
  • Бакланова Наталия Ивановна
RU2748155C1
СПОСОБ ПОЛУЧЕНИЯ АПАТИТА КАЛЬЦИЯ 2011
  • Алой Альберт Семенович
  • Макарова Анастасия Вадимовна
  • Мокин Николай Константинович
RU2473461C2
Способ получения диопсида 2022
  • Твердов Илья Дмитриевич
  • Галимов Энгель Рафикович
  • Готлиб Елена Михайловна
  • Ямалеева Екатерина Сергеевна
RU2801146C1
СПОСОБ ПОЛУЧЕНИЯ СЛОЖНЫХ ОКСИДНЫХ МАТЕРИАЛОВ 2012
  • Кузнецов Максим Валерьевич
  • Томилин Олег Борисович
  • Мурюмин Евгений Евгеньевич
  • Федоренко Анатолий Степанович
  • Пугачев Валерий Сергеевич
RU2492963C1

Иллюстрации к изобретению RU 2 579 632 C1

Реферат патента 2016 года СПОСОБ ПОЛУЧЕНИЯ НАНОУЛЬТРАДИСПЕРСНОГО ПОРОШКА ОКСИДА МЕТАЛЛА

Изобретение относится к области химической промышленности. Способ включает обработку исходной смеси, содержащей хлорид металла, в токе водяного пара при повышенной температуре. В исходную смесь вводят хлорид натрия. Соотношение хлорид металла: хлорид натрия =1÷2:1. Обработку проводят при скорости подачи водяного пара 40-70 мл/мин и температуре 300-400°С. Изобретение позволяет получить нано-ультрадисперсный порошок оксида металла с заранее заданной морфологией при низких температурах. 2 ил., 3 пр.

Формула изобретения RU 2 579 632 C1

Способ получения наноультрадисперсного порошка оксида металла, включающий обработку исходной смеси, содержащей хлорид соответствующего металла, в токе водяного пара при повышенной температуре, отличающийся тем, что в исходную смесь, содержащую растворимый хлорид соответствующего металла, дополнительно вводят хлорид натрия при соотношении компонентов хлорид металла:хлорид натрия = 1÷2:1 и обработку проводят при скорости подачи водяного пара 40-70 мл/мин и температуре 300-400°С.

RU 2 579 632 C1

Авторы

Васильев Виктор Георгиевич

Владимирова Елена Владимировна

Халиуллина Аделя Шамильевна

Карпова Татьяна Сергеевна

Кожевников Виктор Леонидович

Пастухов Владимир Иванович

Герасимова Екатерина Сергеевна

Даты

2016-04-10Публикация

2014-07-24Подача