Способ термомеханической обработки термически-упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Mn-Ag Российский патент 2017 года по МПК C22F1/57 C22C21/16 

Описание патента на изобретение RU2623557C1

Изобретение относится к области термомеханической обработки термомеханических материалов с изменением их механических свойств и может быть использовано в авиационно-космической, транспортной и других областях промышленности при изготовлении полуфабрикатов из термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Mn, дополнительно легированных Ag.

Развитие авиационно-космической промышленности неразрывно связано с улучшением эксплуатационных характеристик летательных аппаратов, улучшением топливной эффективности и снижением затрат, связанных с их изготовлением и обслуживанием. Улучшение эксплуатационных характеристик и топливной эффективности может быть достигнуто за счет снижения массы отдельно взятых элементов конструкции посредством применения материалов с улучшенным комплексом механических свойств. Существует несколько подходов, ведущих к увеличению механических характеристик алюминиевых сплавов системы Al-Cu-Mg-Mn: 1) варьирование химического состава сплавов, 2) оптимизация режимов термической обработки, 3) применение термомеханической обработки. Первые два подхода применительно к сплавам системы Al-Cu-Mg-Mn имеют ограниченные возможности в направлении заметного количественного улучшения механических свойств. Практика показывает, что более эффективно повышению механических свойств способствует термомеханическая обработка.

Известен сплав, содержащий, мас.%: Cu - 4,97; Mg - 0,84; Mn - 0,61; Ag - 0,53; V - 0,02; Fe - 0,06; Si - 0,05, остальное алюминий (патент США №5652063, МПК C22C 21/00, опубл. 29 июля 1997 г.). Обработка сплава включает получение высококачественной отливки, гомогенизацию заготовки в интервале температур 513…527°C, закалку с температуры гомогенизации, холодную деформацию на 8% и искусственное старение при температуре 163°C в течение 10 дней (состояние T8). После указанной обработки сплав имеет следующие механические характеристики: предел прочности 565 МПа, относительное удлинение 9%.

Известен сплав, содержащий, мас.%: Cu - 6,0; Mg - 0,5; Mn - 0,5; Ag - 0,4; V - 0,1; Zr - 0,15; Si - 0,04, остальное алюминий (патент США №4772342, МПК C22C 21/16, опубл. 20 сентября 1988 г.). Способ обработки сплава включает получение расплава данного химического состава в тигле индукционной печи из высокочистых порошков химических элементов дисперсностью не более 50 мкм, кристаллизацию отливок диаметром 36 мм, последующую гомогенизацию в течение 5 часов при температуре 450°C, горячую экструзию до диаметра 9 мм при температуре 420°C, отжиг в течение 3 часов при температуре 530°C, закалку в воду с этой температуры с последующим искусственным старением при температуре 195°C в течение 7 часов. После обработки сплав имеет предел прочности 620 МПа и относительное удлинение 8,5%.

Известны способы термомеханической обработки алюминиевых сплавов системы Al-Cu-Mg-Mn-Ag, в результате которых достигают предела прочности 480…540 МПа и относительного удлинения 8…15% (патенты США №7704333, МПК C22C 21/12, опубликован 27 апреля 2010 г., №5376192, МПК C22C 21/00, опубликован 27 декабря 1994 г.). Данные способы основаны на горячей деформации ковкой, прокаткой или экструзией гомогенизированных слитков, закалке после горячей деформации, холодном растяжении или сжатии со степенями деформации 1,5…15% и последующем искусственном старении.

Однако, известные способы не обеспечивают достаточное увеличение прочностных характеристик.

Известен способ термомеханической обработки (патент РФ №2425165, МПК C22C 21/16, опубл. 27 июля 2011 г.) сложнолегированного алюминиевого сплава системы Al-Cu-Mg-Mn-Ag, который включает равноканальное угловое прессование при температуре 300°C в три прохода, прокатку полученных заготовок при комнатной температуре до толщины 2 мм., закалку с температуры 525°C и искусственное старение в течение 6 часов при температуре 190°C. В результате такой обработки достигается улучшенный комплекс прочностных свойств: предел текучести 490 МПа, предел прочности 550 МПа, относительное удлинение 10%.

Однако, достигаемый комплекс свойств недостаточно высок для использования в ответственных конструкциях.

Техническим результатом изобретения является повышение уровня и однородности прочностных характеристик термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Mn-Ag за счет создания однородной в продольном и поперечном сечении заготовки фрагментированной ультрамелкозернистой структуры с упрочняющими фазами.

Указанный технический результат достигается способом получения ультрамелкозернистых заготовок, включающим предварительный гомогенизационный отжиг в интервале температур 500…520°C в течение не менее 20 часов, последующую закалку в воду и интенсивную пластическую деформацию заготовки при комнатной или криогенной температуре с накопленной истинной степенью деформации e≥4.

Согласно изобретению интенсивную пластическую деформацию осуществляют равноканальным угловым прессованием, или прокаткой, или кручением

Известно, что необходимыми условиями формирования ультрамелкозернистой (УМЗ) структуры, содержащей преимущественно большеугловые границы, которая позволяет достичь необычно высокой прочности в металлических материалах, является реализация интенсивной пластической деформации при относительно низких температурах (ниже температуры рекристаллизации) с достижением истинной накопленной степени деформации e≥4 [Р.З. Валиев, И.В. Александров. Объемные наноструктурные металлические материалы. - М.: ИКЦ «Академкнига», 2007 - 308 с. (стр. 322-328)].

При этом в повышение прочности сплава наибольший вклад вносит зернограничное упрочнение за счет уменьшения размера зерен менее 0.5 мкм в соответствии с известным соотношением Холла-Петча для предела текучести [Кокс Ю.В. Физика прочности и пластичности. Пер. с англ., сборник. М.: Металлургия, 1972. 304 с.], а также за счет формирования большеугловых границ зерен с общей долей не менее 60%, которые в сочетании с малоугловыми и специальными границами обеспечивают наибольший вклад в упрочнение. Большеугловые границы зерен способствуют повышению пластичности за счет вовлечения в деформацию зернограничных процессов, в частности за счет накопления дислокации на границах зерен. Дополнительный вклад в пластичность дает также относительная невысокая плотность дислокации (менее 1014 м-2) внутри ультрамелких зерен, их равноосная форма, относительно равновесные границы, что повышает однородность пластического течения и снижает вероятность ранней локализации деформации [E. Ma. Eight routes to improve the tensile ductility of bulk nanostructured metals and alloys, JOM (2006) Р. 49].

Технический результат изобретения достигается благодаря предложенной совокупности операций, обеспечивающей вышеописанные свойства, которая включает:

- гомогенизацию отливок при температурах 500…520°C в течение 20…30 часов. Обеспечивает растворение грубых неравновесных эвтектических включений и равномерное распределение легирующих элементов по объему слитка;

- закалку в воду с температуры гомогенизации;

- интенсивную пластическую деформацию при комнатной или криогенной температуре с истинной степенью деформации e≥4, в результате которой происходит измельчение структуры и формирование фрагментированной наноструктуры матрицы сплава, распад пересыщенного твердого раствора с образованием термодинамически стабильных упрочняющих фаз, которые гетерогенно зарождаются в процессе деформации на границах субзерен и дислокационных скоплений. При этом увеличение степени деформации до e≥4 способствует формированию θ - фазы (Al2Cu), S - фазы (Al2CuMg), а также - фазы (MgAg) и U- фазы (AlMgAg) равноосной формы, выделение которых невозможно при условиях стандартной упрочняющей термической обработки. Последовательность выделения фаз принимает следующий вид: α твердый раствор, фаза - фаза, фаза. Описанные структурные изменения, вызванные интенсивной пластической деформацией, наряду с повышенной плотностью дефектов обеспечивают достижение высоких прочностных свойств.

Сущность изобретения поясняется чертежами, где на фиг. 1 показаны зависимости напряжений течения от степени деформации для различных видов обработки: 1 - для деформированного состояния по предлагаемому способу, 2 - после упрочняющей термической обработки на максимальную твердость (закалка с температуры 510°C и последующее искусственное старение в течение 10 часов при температуре 165°C), 3 - после гомогенизирующего отжига в течение 24 часов при температуре 510°C, 4 - в состоянии поставки. На фиг. 2 представлена микроструктура сплава, полученная методом просвечивающей электронной микроскопии после обработки по предлагаемому способу (e≈6). На фиг. 3 приведена зависимость микротвердости от температуры выдержки (отжига) в течение 1 часа на образцах, обработанных по предлагаемому способу.

Пример осуществления изобретения

Из литого алюминиевого сплава следующего химического состава, мас.%: Cu 4,4; Mg 0,5; Mn 0,4; Ag 0,5; Ti 0,1; остальное алюминий, методом механической обработки изготовили заготовки для последующей термомеханической обработки.

Гомогенизационный отжиг проводили при температуре 510±5°C в течение 24 часов с последующей закалкой в воду. Далее проводили интенсивную пластическую деформацию методом кручения (ИПДК) под высоким гидростатическим давлением: одну заготовку при комнатной температуре до истинной степени деформации e≈6, другую заготовку - при температуре t=-50°С до истинной степени деформации e≈4.

Для оценки влияния термомеханической обработки на механические свойства сплава были проведены сравнительные испытания на растяжение при комнатной температуре серий образцов, изготовленных из полуфабрикатов в различных состояниях (Фиг. 1). Результаты приведены в таблице.

Как видно из полученных данных, предлагаемый способ термомеханической обработки позволяет повысить прочностные характеристики сплава по сравнению со стандартной упрочняющей термической обработкой примерно на 60% с увеличением уровня пластичности до 55%.

Результаты просвечивающей электронной микроскопии (ПЭМ) показали, что при ИПДК формируется однородная фрагментированная структура, состоящая из смеси высокоугловых и малоугловых границ зерен, кольцевой вид электронограммы свидетельствует о высокой плотности дислокаций (фиг. 2).

Изучение влияния последующих выдержек в течение 1 часа в интервале температур 100…300°C на микротвердость и механические свойства (Фиг. 3) показало, что вплоть до 180°C после термомеханической обработки по предложенному изобретению сплав сохраняет свои высокие прочностные характеристики, что открывает большие возможности применения сплава в качестве конструкционного материала с эксплуатационной температурой до 165°C. Предложенный способ может быть использован в качестве основного метода формирования высокопрочных свойств в алюминиевых сплавах системы Al-Cu-Mg-Mn-Ag.

Таким образом, предложенное изобретение позволяет повысить уровень и однородность прочностных характеристик термически упрочняемых алюминиевых сплавов Al-Cu-Mg-Mn-Ag.

Похожие патенты RU2623557C1

название год авторы номер документа
Способ термомеханической обработки полуфабрикатов из алюминиевых сплавов систем Al-Cu, Al-Cu-Mg и Al-Cu-Mn-Mg для получения изделий с повышенной прочностью и приемлемой пластичностью 2015
  • Кайбышев Рустам Оскарович
  • Зуйко Иван Сергеевич
  • Газизов Марат Разифович
RU2618593C1
Ультрамелкозернистые алюминиевые сплавы для высокопрочных изделий, изготовленных в условиях сверхпластичности, и способ получения изделий 2020
  • Валиев Руслан Зуфарович
  • Мурашкин Максим Юрьевич
  • Бобрук Елена Владимировна
RU2739926C1
Способ термомеханической обработки полуфабрикатов из термоупрочняемых Al-Cu-Mg-Ag сплавов 2019
  • Газизов Марат Разифович
  • Кайбышев Рустам Оскарович
  • Тагиров Дамир Вагизович
  • Жемчужникова Дарья Александровна
RU2707114C1
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЛЯ ПОВЫШЕНИЯ ТЕХНОЛОГИЧЕСКОЙ ПЛАСТИЧНОСТИ ОБЪЕМНЫХ ПОЛУФАБРИКАТОВ ИЗ Al-Cu-Mg-Ag СПЛАВОВ 2013
  • Кайбышев Рустам Оскарович
  • Жемчужникова Дарья Александровна
  • Тагиров Дамир Вагизович
  • Газизов Марат Разифович
RU2534909C1
СПОСОБ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОБЪЕМНЫХ ПОЛУФАБРИКАТОВ ИЗ AL-CU-MG СПЛАВОВ 2014
  • Кайбышев Рустам Оскарович
  • Жемчужникова Дарья Александровна
  • Тагиров Дамир Вагизович
  • Газизов Марат Разифович
RU2571993C1
УЛЬТРАМЕЛКОЗЕРНИСТЫЕ АЛЮМИНИЕВЫЕ СПЛАВЫ ДЛЯ ЭЛЕКТРОТЕХНИЧЕСКИХ ИЗДЕЛИЙ И СПОСОБЫ ИХ ПОЛУЧЕНИЯ (ВАРИАНТЫ) 2011
  • Валиев Руслан Зуфарович
  • Мурашкин Максим Юрьевич
  • Бобрук Елена Владимировна
RU2478136C2
Способы термомеханической обработки проводниковых сплавов системы Al-Mg-Si 2019
  • Мурашкин Максим Юрьевич
  • Смирнов Иван Валерьевич
RU2749601C2
СПОСОБ ОБРАБОТКИ ДЛИННОМЕРНЫХ ИЗДЕЛИЙ ИЗ АЛЮМИНИЕВЫХ СПЛАВОВ 2013
  • Столяров Владимир Владимирович
RU2537675C2
ПЛИТА ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И СПОСОБ ЕЕ ИЗГОТОВЛЕНИЯ 2014
  • Каблов Евгений Николаевич
  • Ткаченко Евгения Анатольевна
  • Вахромов Роман Олегович
  • Антипов Владислав Валерьевич
  • Милевская Тамара Васильевна
  • Попова Ольга Игоревна
RU2569275C1
СПОСОБ ПОЛУЧЕНИЯ МАССИВНЫХ ПОЛУФАБРИКАТОВ ИЗ ВЫСОКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2020
  • Каблов Евгений Николаевич
  • Ткаченко Евгения Анатольевна
  • Бабанов Виталий Викторович
  • Селиванов Андрей Аркадьевич
  • Асташкин Александр Игоревич
RU2744582C1

Иллюстрации к изобретению RU 2 623 557 C1

Реферат патента 2017 года Способ термомеханической обработки термически-упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Mn-Ag

Изобретение относится к области металлургии и может быть использовано в авиационно-космической, транспортной и других областях промышленности при изготовлении полуфабрикатов из термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Mn-Ag. Способ включает предварительный гомогенизационный отжиг в интервале температур 500-520°C в течение не менее 20 часов, последующую закалку в воду и интенсивную пластическую деформацию заготовки при комнатной или криогенной температуре с накопленной истинной степенью деформации e≥4. Совокупность предложенных операций позволяет повысить предел текучести сплавов до 760 МПа, предел прочности до 850 МПа с сохранением высокого уровня пластических свойств. 1 з.п. ф-лы, 1 пр., 1 табл., 3 ил.

Формула изобретения RU 2 623 557 C1

1. Способ термомеханической обработки термически упрочняемых алюминиевых сплавов системы Al-Cu-Mg-Mn-Ag, включающий в себя предварительный гомогенизационный отжиг в интервале температур 500-520°C в течение не менее 20 часов, последующую закалку в воду и интенсивную пластическую деформацию заготовки при комнатной или криогенной температуре с накопленной истинной степенью деформации е≥4.

2. Способ по п. 1, отличающийся тем, что интенсивную пластическую деформацию осуществляют равноканальным угловым прессованием, или прокаткой, или кручением.

Документы, цитированные в отчете о поиске Патент 2017 года RU2623557C1

СПОСОБ ДЕФОРМАЦИОННО-ТЕРМИЧЕСКОЙ ОБРАБОТКИ ОБЪЕМНЫХ ПОЛУФАБРИКАТОВ ИЗ AL-CU-MG СПЛАВОВ 2014
  • Кайбышев Рустам Оскарович
  • Жемчужникова Дарья Александровна
  • Тагиров Дамир Вагизович
  • Газизов Марат Разифович
RU2571993C1
KR 2009118404 A, 18.11.2009
СПОСОБ ТЕРМОМЕХАНИЧЕСКОЙ ОБРАБОТКИ ДЛЯ ПОВЫШЕНИЯ ТЕХНОЛОГИЧЕСКОЙ ПЛАСТИЧНОСТИ ОБЪЕМНЫХ ПОЛУФАБРИКАТОВ ИЗ Al-Cu-Mg-Ag СПЛАВОВ 2013
  • Кайбышев Рустам Оскарович
  • Жемчужникова Дарья Александровна
  • Тагиров Дамир Вагизович
  • Газизов Марат Разифович
RU2534909C1
ЖАРОПРОЧНЫЙ ДЕФОРМИРУЕМЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ И ИЗДЕЛИЕ, ВЫПОЛНЕННОЕ ИЗ НЕГО 2010
  • Телешов Виктор Владимирович
  • Захаров Валерий Владимирович
  • Кайбышев Рустам Оскарович
RU2425165C1
CN 102888576 A, 23.01.2013.

RU 2 623 557 C1

Авторы

Большаков Борис Олегович

Мусин Фаниль Фанусович

Рааб Георгий Иосифович

Александров Игорь Васильевич

Даты

2017-06-27Публикация

2016-04-13Подача