Полимерный нанокомпозиционный материал триботехнического назначения с ориентированной структурой Российский патент 2017 года по МПК C08L23/06 C08K3/04 C08K7/04 C08J5/16 B82Y30/00 

Описание патента на изобретение RU2625454C2

Изобретение относится к композиционным материалам на полимерной основе и представляет собой нанокомпозиционный материал с ориентированной надмолекулярной структурой, наполненный многостенными углеродными нанотрубками. Изобретение может быть использовано для изготовления триботехнических материалов, в том числе подшипников скольжения, втулок и др., применяемых в слабо- и средненагруженных узлах трения, в том числе и в эндопротезировании коленных и тазобедренных суставов.

В качестве матрицы нанокомпозиционного материала выступает сверхвысокомолекулярный полиэтилен. Данный материал может быть использован в слабо- и средненагруженных узлах трения для изготовления подшипников скольжения и/или качения, втулок и др., способных работать в условиях сухого трения (без использования смазки). Также данный материал может быть использован в качестве полимерного вкладыша (ацетабулярного компонента) эндопротезов тазобедренного или коленного суставов. Разработанный ориентированный полимерный материал обладает пределом прочности на разрыв на 350% выше, чем исходный СВМПЭ. Коэффициент сухого трения полимерного нанокомпозиционного материала с ориентированной структурой составляет 0,13 при нагрузке 19,2 H и скорости скольжения 150 об/мин. Износостойкость выше на 56% по сравнению с исходным СВМПЭ.

Известен способ (RU №2490204, В82В 3/00, C08J 3/205, C08J 7/04, С08К 3/04, C08L 23/00, Способ получения композиций на основе углеродных нанотрубок и полиолефинов) получения нанокомпозитов на основе полиолефинов, используемых при получении различных изделий, таких как пленки, листы, трубы, нити и волокна, армированных углеродными нанотрубками. Способ заключается в механическом растирании нанотрубок в воде с добавлением водорастворимого полимера с концентрацией 0,01-0,1 мас. %. После чего суспензию диспергируют ультразвуком при максимальной температуре среды не выше 70°С. Затем суспензию наносят на поверхность гранул полиолефина и сушат. Полученные гранулы нанокомпозита содержат до 0,5 мас. % углеродных трубок.

Недостатком данного способа является использование трудоемкой операции предварительного растирания и диспергирования нанотрубок в воде с добавлением воднорастворимого полимера. В случае применения нанокомпозитов в медицине использование водорастворимых полимеров может снизить биосовместимость материалов. Достигнутое увеличение механических свойств на 30% является довольно низким показателем по сравнению с заявляемым нами результатом.

Известно изобретение (RU 2347793, C08L 33/12, C08J 5/16, A61L 27/44, Полимерная антифрикционная композиция биомедицинского назначения) композиционного материала, обладающего пониженным коэффициентом трения, например для использования в узле трения височно-нижнечелюстного сустава или нижней челюсти. Предложенная полимерная композиция содержит смесь мономера метилметакрилата, полиметилметакрилата, инициатора - перекиси бензоила в различном соотношении. В данном изобретении СВМПЭ используется в качестве армирующей добавки, а не полимерной матрицы, как было предложено нами.

Недостатком данного изобретения является то, что оно предназначено для восстановления дефектов костей нижней челюсти, в узле трения височно-нижнечелюстного сустава, и не может быть использовано в качестве полимерного вкладыша (ацетабулярного компонента) эндопротезов тазобедренного и коленного суставов.

Известен способ (RU 2300537 Способ изготовления полимерных деталей трения скольжения из сверхвысокомолекулярного полиэтилена для искусственных эндопротезов, C08L 23/06, C08J 5/16, В29С 43/00), в котором исходный порошок сверхвысокомолекулярного полиэтилена подвергают термической обработке в сверхкритическом диоксиде углерода. После чего порошок прессуют при 190-200°С и удельном давлении 10-60 МПа и осуществляют механическую доводку размеров полимерной детали. Кроме того, состав исходного порошка может дополнительно содержать 0,05-0,15 мас. % меди, серебра или железа с размерами их частиц 10-100 нм. Недостатком данного способа получения деталей трения является недостаточная износостойкость материала.

Известен способ (RU 20071417, С08J 57/04, C08J 5/16, C08J 3/20, C08L 23/06, С08К 3/08, В29С 43/00, Способ изготовления полимерных деталей трения скольжения для искусственных эндопротезов), включающий в себя обработку порошка сверхвысокомолекулярного полиэтилена в сверхкритическом диоксиде углерода. После чего в порошкообразный сверхвысокомолекулярный полиэтилен путем смешения вводят органозоли металлов с размерами 100-550 нм, выбранные из группы золота или смеси золота и серебра в количестве 0,15-0,5 мас. %. Затем полученную смесь термообрабатывают при температуре 60-80°С в вакууме в течение 3-5 часов с последующим прессованием из нее полимерной детали при температуре 190-200°С и удельном давлении 10-60 МПа. Недостатком данного способа получения деталей трения является недостаточная износостойкость материала.

Известно изобретение (RU 2281300, C08L 33/12, C08L 33/10, C08J 5/04, A61L 27/44, Композиция для биомедицинского материала, способ его получения и материал биомедицинского назначения). Предложенная композиция содержит полимерное связующее - смесь полиметилметакрилата или сополимера метилметакрилата с метилакрилатом и мономером - метилметакрилатом в различном соотношении, углеродные непрерывные нити по 200-1000 филамент из гидратцеллюлозного волокна или полиакрилонитрильного волокна (2-10 мас.ч.) и наполнитель - гидроксиапатит (25-40 мас.ч.) Недостатком данного изобретения является то, что разработанные материалы не обладают высокой износостойкостью.

Известно изобретение (RU 2540572, C08L 59/04, C08L 59/02, C08L 59/00, С08К 13/02, C08J 5/16, В61Н 1/00, Антифрикционный композиционный полимерный материал), представляющее собой антифрикционный композиционный полимерный материал, выполненный из композиции, содержащей полиоксиметилен и модифицирующие добавки в виде порошкообразной смеси из сверхвысокомолекулярного полиэтилена с молекулярной массой 4500000 у.е. и фторопласта марки Ф4К15М5. Недостатком данного антифрикционного композиционного материала является относительно высокий коэффициент трения по стали.

Известно изобретение (RU 2535216, C08L 23/06, С08К 3/04, C08J 5/16 Антифрикционная полимерная композиция с терморасширенным графитом). Это изобретение относится к антифрикционной полимерной композиции на основе сверхвысокомолекулярного полиэтилена. Композиция содержит сверхвысокомолекулярный полиэтилен и неорганический модификатор, в качестве которого используется терморасширенный графит в количестве 2 мас. %. Использование лопастного смесителя для введения терморасширенного графита в сверхвысокомолекулярный полиэтилен не позволяет получать качественного распределения наполнителя в полимерной матрице, что негативно отражается на относительном удлинении и пределе прочности композита.

Известен ряд патентов (СА 2526129 Crosslinked ultra-high molecular weight polyethylene (uhmw-pe) containing.alpha.-tocopherol, EP 1624905 CROSSLINKED, ULTRAHIGH MOLECULAR WEIGHT POLYETHYLENE (UHMW-PE), WO 2008113388 A1 Oxidation resistant highly-crosslinked uhmwpe), смысл которых заключается в радиационном сшивании структуры сверхвысокомолекулярного полиэтилена для увеличения износостойкости и жесткости. Недостатком использования этого способа является снижение пластичности (ударной прочности) сверхвысокомолекулярного полиэтилена, которое может привести к разрушению материала при ударных нагрузках.

Наиболее близким по технической сущности и достигаемому техническому результату является изобретение (RU 2381242, C08L 23/26, В82В 1/00, Композиционный износостойкий материал на основе сверхвысокомолекулярного полиэтилена (СВМПЭ)). В данном прототипе в качестве матрицы композиционных материалов используются сверхвысокомолекулярный полиэтилен и различные дисперсные наполнители (карбоксил, карбид вольфрама, карбид кремния и др.). В качестве способа введения наполнителя в полимерную матрицу была использована мельница планетарного типа. После чего полученные порошки формовались методом термопрессования. Недостатком данного способа является то, что смешение полимера с дисперсными наполнителями в мельницах планетарного типа приводит к распределению наполнителя только по поверхности частиц полимера, что снижает эффект армирования.

Техническим результатом является нанокомпозиционный материал с ориентированной структурой, содержащий многостенные углеродные нанотрубки. Полученный материал отличается равномерным распределением наполнителя в объеме полимерной матрицы и ориентированной структурой полимерной матрицы, благодаря чему полимерный нанокомпозиционный материал с ориентированной структурой имеет повышенные механические свойства, низкий и стабильный коэффициент трения, высокую стойкость к истиранию.

Технический результат достигается следующим образом.

Полимерный нанокомпозиционный материал триботехнического назначения с ориентированной структурой, включающий матрицу из сверхвысокомолекулярного полиэтилена с ориентированной надмолекулярной структурой и наполнитель, в качестве которого используют многостенные углеродные нанотрубоки, при следующем соотношении компонентов, мас. %:

Наполнитель 0,1-1 Сверхвысокомолекулярный полиэтилен остальное.

При этом многостенные углеродные нанотрубки выполнены диаметром 4-15 нм и длиной более 2 мкм.

Изобретение поясняется чертежом, где на фиг 1 показана сканирующая электронная микроскопия полимерного нанокомпозиционного материала с ориентированной структурой, имеющего нанофибриллярную структуру.

В качестве матрицы нанокомпозиционного материала используют сверхвысокомолекулярный полиэтилен (СВМПЭ) с молекулярной массой 5⋅106 г/моль. В качестве наполнителя были использованы многостенные углеродные нанотрубки (МУНТ) диаметром 4-15 нм и длиной более 2 мкм. Введение МУНТ в СВМПЭ осуществлялось методом твердофазного смешения с использованием мельницы планетарного типа АПФ-3. Концентрация нанотрубок в СВМПЭ составляла 0,1,-1 мас. %.

Получение полимерного нанокомпозиционного материала с ориентированной структурой осуществлялось в несколько этапов.

На первом этапе методом термопрессования были получены монолитные материлы с изотропной структурой.

На втором этапе были получены ориентированные прекурсоры материалов методом одноосной низкоориентационной вытяжки при комнатной температуре.

На третьем этапе ориентированные прекурсоры формовались в ориентированные полимерные нанокомпозиционные материалы методом повторного термопрессования.

За счет использования операции ориентирования наблюдалось улучшение качества распределения углеродных нанотрубок в СВМПЭ и ориентирование макромолекул полимера. Полученные нанокомпозиционные материалы обладают повышенным пределом прочности на растяжение и хорошими трибологическими свойствами.

Пример 1

Полимерный нанокомпозиционный материал с ориентированной структурой имеет нанофибриллярную структуру, которая достигается за счет использования ориентации макромолекул СВМПЭ и присутствия МУНТ, о чем свидетельствует фиг. 1.

Механические свойства на растяжение полимерного нанокомпозиционного материала с ориентированной структурой представлены в таблице 1. Механические испытания на растяжение были проведены согласно стандарту ASTM D638.

Коэффициент сухого трения полимерного нанокомпозиционного материала с ориентированной структурой составляет 0,13 при нагрузке 19,2 Н и скорости скольжения 150 об/мин. Износостойкость выше на 56% по сравнению с исходным СВМПЭ.

Похожие патенты RU2625454C2

название год авторы номер документа
Экструдируемый антифрикционный композит на основе сверхвысокомолекулярного полиэтилена 2017
  • Панин Сергей Викторович
  • Корниенко Людмила Александровна
  • Иванова Лариса Рюриковна
  • Алексенко Владислав Олегович
  • Буслович Дмитрий Геннадьевич
RU2674019C1
Экструдируемый антифрикционный композит на основе сверхвысокомолекулярного полиэтилена 2022
  • Гоголева Ольга Владимировна
  • Петрова Павлина Николаевна
  • Федоров Андрей Леонидович
  • Кондаков Михаил Николаевич
RU2791530C1
Композиционный материал на основе сверхвысокомолекулярного полиэтилена, модифицированного пластификатором 2023
  • Данилова Сахаяна Николаевна
  • Охлопкова Айталина Алексеевна
  • Дьяконов Афанасий Алексеевич
  • Оконешникова Анастасия Васильевна
  • Лазарева Надежда Николаевна
RU2816004C1
Иерархически армированный гетеромодульный экструдируемый твердосмазочный нанокомпозит на основе СВМПЭ и способ его получения 2018
  • Панин Сергей Викторович
  • Корниенко Людмила Александровна
  • Иванова Лариса Рюриковна
  • Алексенко Владислав Олегович
  • Буслович Дмитрий Геннадьевич
RU2674258C1
Металлополимерные подшипники скольжения, выполненные из ориентированного полимерного нанокомпозиционного материала 2016
  • Максимкин Алексей Валентинович
  • Сенатов Фёдор Святославович
  • Калошкин Сергей Дмитриевич
  • Чуков Дилюс Ирекович
  • Данилов Владимир Дмитриевич
RU2646205C1
Вкладыш ацетабулярного компонента эндопротеза тазобедренного сустава, выполненный из полимерного нанокомпозиционного материала 2016
  • Максимкин Алексей Валентинович
  • Сенатов Фёдор Святославович
  • Калошкин Сергей Дмитриевич
  • Чердынцев Виктор Викторович
  • Чуков Дилюс Ирекович
  • Мостовая Ксения Сергеевна
RU2631889C1
Композиционный конструкционный материал на основе сверхвысокомолекулярного полиэтилена, оксида цинка, 2-меркаптобензотиазола и серы 2019
  • Данилова Сахаяна Николаевна
  • Дьяконов Афанасий Алексеевич
  • Васильев Андрей Петрович
  • Герасимова Юлия Сергеевна
  • Охлопкова Айталина Алексеевна
  • Слепцова Сардана Афанасьевна
RU2706658C1
НАНОКОМПОЗИЦИОННЫЙ КОНСТРУКЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИТЕТРАФТОРЭТИЛЕНА 2011
  • Хатипов Сергей Амерзянович
  • Селиверстов Денис Иванович
  • Жутаева Юлия Радиомировна
  • Терешенков Алексей Викторович
  • Конова Елена Михайловна
  • Садовская Наталия Владимировна
RU2467033C1
СПОСОБ ИЗГОТОВЛЕНИЯ ПОЛИМЕРНОГО НАНОКОМПОЗИЦИОННОГО МАТЕРИАЛА И МАТЕРИАЛ, ИЗГОТОВЛЕННЫЙ ЭТИМ СПОСОБОМ 2008
  • Герасин Виктор Анатольевич
  • Антипов Евгений Михайлович
  • Калошкин Сергей Дмитриевич
  • Чердынцев Виктор Викторович
  • Ергин Константин Сергеевич
RU2403269C2
Полимерная композиция триботехнического назначения на основе сверхвысокомолекулярного полиэтилена и 2-меркаптобензотиазола 2018
  • Дьяконов Афанасий Алексеевич
  • Данилова Сахаяна Николаевна
  • Васильев Андрей Петрович
  • Охлопкова Айталина Алексеевна
  • Слепцова Сардана Афанасьевна
RU2688134C1

Иллюстрации к изобретению RU 2 625 454 C2

Реферат патента 2017 года Полимерный нанокомпозиционный материал триботехнического назначения с ориентированной структурой

Изобретение относится к нанокомпозиционному материалу с ориентированной структурой на основе сверхвысокомолекулярного полиэтилена, который может быть использован для изготовления триботехнических изделий, таких как подшипники скольжения, втулки, применяемые в слабо- и средненагруженных узлах трения, в том числе в эндопротезах коленных и тазобедренных суставов в качестве полимерного вкладыша. Полимерный материал содержит матрицу из сверхвысокомолекулярного полиэтилена с ориентированной надмолекулярной структурой с молекулярной массой 5⋅106 г/моль и наполнитель, в качестве которого используют многостенные углеродные нанотрубки, в количестве 0,1-1 мас. %. Причем многостенные углеродные нанотрубки выполнены диаметром 4-15 нм и длиной более 2 мкм. Полученный материал отличается равномерным распределением наполнителя в объеме полимерной матрицы и ориентированной структурой полимерной матрицы, а также обладает повышенным пределом прочности на растяжение и хорошими трибологическими свойствами. 1 ил., 1 табл.

Формула изобретения RU 2 625 454 C2

Полимерный нанокомпозиционный материал триботехнического назначения с ориентированной структурой, включающий матрицу из сверхвысокомолекулярного полиэтилена с ориентированной надмолекулярной структурой с молекулярной массой 5⋅106 г/моль и наполнитель, в качестве которого используют многостенные углеродные нанотрубоки при следующем соотношении компонентов, мас. %:

Наполнитель 0,1-1 Ориентированный сверхвысокомолекулярный полиэтилен остальное,

при этом многостенные углеродные нанотрубки выполнены диаметром 4-15 нм и длиной более 2 мкм.

Документы, цитированные в отчете о поиске Патент 2017 года RU2625454C2

RU 2011141623 A, 20.11.2013
Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
Многослойные углеродные нанотрубки и их применение / Рос
хим
ж
Рос
хим
об-ва им
Д.И
Менделеева), 2008, т
LII,no 5, с
Механический грохот 1922
  • Красин Г.Б.
SU41A1
Влияния малых добавок многослойных углеродных нанотрубок на структуру и физические свойства полимеров
Туйчиев Ш
и др
/ДАН Республики Таджикистан, 2010, т.53, no 8, с.627-631
КОМПОЗИЦИОННЫЙ ПОЛИМЕРНЫЙ АНТИФРИКЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ ПОЛИАМИДА 2012
  • Моторин Сергей Васильевич
  • Горячкин Анатолий Борисович
  • Захаров Дмитрий Борисович
  • Кольжанов Виктор Федорович
RU2522106C1
ПОЛИМЕРНЫЕ КОМПОЗИЦИИ, СОДЕРЖАЩИЕ НАНОТРУБКИ 2006
  • Бхатт Сандип
  • Понселе Жан-Мишель
  • Таормина Винченцо
RU2389739C2
ПОЛИМЕРНЫЙ МАТЕРИАЛ С УЛУЧШЕННЫМИ ПРОЧНОСТНЫМИ СВОЙСТВАМИ 2014
  • Петрова Павлина Николаевна
  • Гоголева Ольга Владимировна
  • Майер Андрей Федорович
  • Морова Лилия Ягьяевна
  • Охлопкова Айталина Алексеевна
RU2552112C1

RU 2 625 454 C2

Авторы

Максимкин Алексей Валентинович

Сенатов Фёдор Святославович

Калошкин Сергей Дмитриевич

Чердынцев Виктор Викторович

Чуков Дилюс Ирекович

Даты

2017-07-14Публикация

2015-11-17Подача