Изобретение относится к металлургии и может быть использовано при изготовлении огнеупорных бетонных изделий нормальных размеров и простых фасонов, предназначенных для применения в футеровке подин тепловых агрегатов в качестве опорных элементов, подвергающихся действию значительных стационарных механических нагрузок и истирающих усилий в зонах с температурой до 1350°С.
Применяемые в настоящее время огнеупорные бетоны имеют недостаточную термическую стойкость или химическую стойкость к железной окалине. Например, корундовые бетоны марок СКБ-97, BARCAST 95 WK, BARCAST 96 W, СБК-90 являются стойкими к железной окалине, но не обладают термостойкостью, а алюмосиликатные бетоны марок СКМБ 50, СКБТ 1,6, СШВЦ 40 имеют достаточно высокую термостойкость, однако не обладают стойкостью к железной окалине. При этом стоит учесть, что шлакоустойчивость характеризует химическое взаимодействие огнеупора со смесью жидких оксидов или оксидных соединений, а окалиноустойчивость - химическое взаимодействие огнеупора с тонкодисперсным оксидом железа в твердой или газовой фазе.
Как известно, оптимальным высокоогнеупорным заполнителем, стойким к взаимодействию с железной окалиной, является химически инертный оксид Al2O3 (корунд). В отсутствие жидкой фазы при температурах эксплуатации, материалы, содержащие в своей основе корунд, не взаимодействуют с железной окалиной вплоть до температур плавления одного из компонентов. Однако также известно, что огнеупорные изделия на основе корунда обладают недостаточной термостойкостью. Для увеличения термостойкости в корундовые заполнители вводят оксиды магния (MgO) или кремния (SiO2).
Наиболее близким к заявляемой является огнеупорная бетонная смесь для футеровки тепловых агрегатов (RU 2140407, опубл. 27.10.1999). Смесь содержит огнеупорный заполнитель на основе оксида алюминия и связующее, представляющее собой комплекс тонкодисперсных материалов, в качестве которого смесь содержит Al2O3 или смесь Al2O3 и SiO2, высокоглиноземистый кальцийалюминатный цемент, содержащий не менее 70% Al2O3, оксид магния или алюмомагнезиальную шпинель и дефлокулянт при следующем соотношении компонентов, масс. %:
Данная огнеупорная смесь содержит значительное количество оксида магния в чистом виде или в виде алюмомагниевой шпинели - от 5 до 15 масс. %. При химическом взаимодействии бетонного изделия, выполненного из данной магнийсодержащей смеси, с агрессивной средой в виде тонкодисперсного оксида железа (железной окалины) будет происходить образование соединений Mg и Fe2O3, которые по объему на 20-30% больше, чем первоначальные оксиды. Это приведет к резкому снижению механической прочности огнеупорного бетонного изделия.
Задача настоящего изобретения заключается в разработке огнеупорной смеси, позволяющей получить из нее бетонные изделия для футеровки подин тепловых агрегатов, обладающие повышенной прочностью и стойкостью к окалине.
Предложена огнеупорная бетонная смесь для футеровки подин тепловых агрегатов, содержащая высокоглиноземистый кальцийалюминатный цемент, содержащий не менее 70% Al2O3, а в качестве высокоогнеупорного заполнителя на основе оксида алюминия - корунд, при этом в качестве высокоогнеупорного заполнителя смесь содержит корунд с содержанием оксида алюминия 98,4% фракции 2-7 мм и фракции менее 0,05 мм, а также синтетическую плавленую алюмохромистую шпинель с содержанием Cr2O3 - 15-25 и Al2O3 - 75-85 фракции 0,5-1,5 мм при следующем соотношении компонентов, масс.:
Сущность изобретения заключается в том, что в качестве высокоогнеупорного заполнителя смесь содержит корунд с содержанием Al2O3 98,4%, причем 40 масс. % - корунд фракции 2-7 мм, и 20 масс. % - корунд фракции менее 0,05 мм. Такое количество корунда различных фракций подобрано для исключения образования жидкой фазы при температурах эксплуатации и в присутствии Fe2O3 (железной окалины). Синтетическая плавленая алюмохромистая шпинель с содержанием Cr2O3 - 15-25 и Al2O3 - 75-85, фракции 0,5-1,5 мм, являясь высокоогнеупорным, но инертным заполнителем, не только препятствует образованию жидкой фазы, но и создает термостойкую структуру. Содержание Cr2O3 в алюмохромистой шпинели менее 15 масс. % не обеспечивает необходимой термостойкой структуры, а превышение этого содержания свыше 25 масс. % увеличивает вероятность образования соединений с шестивалентным хромом, которые являются канцерогеноопасными. Размер зерен шпинели и ее количество в составе смеси позволяет максимально повысить термическую стойкость без снижения механической прочности.
Количество высокоглиноземистого кальцийалюминатного цемента, содержащего не менее 70% Al2O3, подобрано исходя из условий, исключающих резкое образование жидкой фазы в совместном присутствии любого количества железной окалины и основных оксидов шихты.
Новый технический результат, достигаемый заявленным изобретением, заключается в повышении прочности и стойкости к железной окалине изделий, применяемых для футеровки подин нагревательных печей, предназначенных для термообработки габаритных стальных заготовок.
Для реализации заявленного способа в качестве компонентов для приготовления смеси использовали корунд фракции 2-7 мм с содержанием Al2O3 98,4% и корунд фракции менее 0,05 мм с содержанием Al2O3 98,4% производства Богдановичского ОАО «Огнеупоры» или Первоуральского завода ОАО «Динур». В качестве высокоглиноземистого кальцийалюминатного цемента, содержащего не менее 70% Al2O3, использовали цемент марки Secar-70. Можно использовать его аналоги марки GORKAL 70 и UAC 70S. В качестве алюмохромистой шпинели использовали синтетическую плавленую шпинель, полученную в результате совместной плавки в электродуговых печах оксидов хрома и алюминия способом «на блок», в следующем соотношении, масс. %: Cr2O3 - 15-25 и Al2O3 - 75-85.
Для приготовления термостойкого бетона, химически стойкого к железной окалине, использовали, масс. %: корунд фракции 2-7 мм с содержанием Al2O3 98,4% (40), корунд фракции менее 0,05 мм с содержанием Al2O3 98,4% (20), высокоглиноземистый кальцийалюминатный цемент марки Secar-70 (10), вышеуказанную синтетическую плавленую алюмохромистую шпинель фракции 0,5-1,5 мм (30). Все компоненты в указанном соотношении перемешивали в смесителе с последующим добавлением воды в количестве 8 масс. %. Время смешения после введения воды составляло 5 минут. Приготовленную массу заливали в металлические формы в виде бруса с размерами 150×150×500 мм. Изделия сушили при температуре 20°С в течение 24 часов и затем термообрабатывали при температуре до 1100°С со скоростью подъема температуры 50 град/час и с выдержкой при максимальной температуре 1100°С 4 часа.
Для определения термостойкости из этой шихты изготавливали образцы стандартного размера по ГОСТ 20190-90 Приложение 5, а для определения химической стойкости к железной окалине - тигли размером 100×100×100 мм с толщиной стенки 25 мм. Изделия показали термическую стойкость в режиме 1250°С - вода более 35 теплосмен, а химическая стойкость - в 1,5 раза выше стойкости к окалине стандартных жаростойких бетонов. После распиливания тигля максимальная толщина пропитки по всему периметру составила 0,2 мм.
После извлечения из формы изделие помещали в сушило и сушили, повышая температуру с +20 до +600°С в течение 45 часов с выдержкой в течение 8 часов при температуре 200°С и 450°С. После этого изделие набирает необходимую прочность (предел прочности на сжатие по результатам лабораторных измерений - до 55…60 Н/мм2) и может быть установлено в тепловой агрегат. Окончательный обжиг изделие проходит при штатной работе агрегата при температуре до +1250°С. При этой температуре предел прочности на сжатие достигает 80…85 Н/мм2. Поскольку окончательный обжиг изделие проходит установленным в свое штатное положение в тепловом агрегате, достигается дополнительная экономия ресурсов и времени при его изготовлении.
Из заявленной смеси были изготовлены подовые блоки проходной толкательной печи на АО «Омутнинский металлургический завод», опорные элементы пода кольцевой печи на ПАО «Северский трубный завод» и др.
название | год | авторы | номер документа |
---|---|---|---|
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ | 2015 |
|
RU2579092C1 |
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ | 1999 |
|
RU2140407C1 |
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ | 2006 |
|
RU2320617C2 |
ОГНЕУПОРНАЯ БЕТОННАЯ КОМПОЗИЦИЯ | 2014 |
|
RU2550626C1 |
ОГНЕУПОРНАЯ ЗАПРАВОЧНАЯ МАССА | 2022 |
|
RU2805678C1 |
ПЛАВЛЕНЫЙ ОГНЕУПОРНЫЙ МАТЕРИАЛ | 2014 |
|
RU2574236C2 |
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ (ВАРИАНТЫ) | 2011 |
|
RU2437862C1 |
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ И СПОСОБ ИЗГОТОВЛЕНИЯ ИЗ НЕЕ БЕТОНА | 2012 |
|
RU2530137C2 |
ОГНЕУПОРНАЯ МАССА ДЛЯ ФУТЕРОВКИ ЖЕЛОБОВ ДОМЕННЫХ ПЕЧЕЙ | 2004 |
|
RU2267472C2 |
ОГНЕУПОРНЫЙ ЗАПОЛНИТЕЛЬ НА ОСНОВЕ ХРОМИСТОГО ГЕКСААЛЮМИНАТА КАЛЬЦИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2009 |
|
RU2401820C1 |
Изобретение относится к огнеупорному производству и может быть использовано для футеровки подин нагревательных печей, предназначенных для термообработки габаритных стальных заготовок. Огнеупорная бетонная смесь содержит высокоглиноземистый кальцийалюминатный цемент, содержащий не менее 70% Al2O3, корунд с содержанием оксида алюминия 98,4% фракции 2-7 мм и фракции менее 0,05 мм, а также синтетическую плавленую алюмохромистую шпинель с содержанием Cr2O3 - 15-25 и Al2O3 - 75-85 фракции 0,5-1,5 мм при следующем соотношении компонентов, масс.%: корунд фракции 2-7 мм 40, корунд фракции менее 0,05 мм 20, высокоглиноземистый кальцийалюминатный цемент 10, синтетическая плавленая алюмохромистая шпинель 30. Изобретение направлено на повышение прочности изделий и повышение стойкости к железной окалине.
Огнеупорная бетонная смесь для футеровки подин тепловых агрегатов, содержащая высокоглиноземистый кальцийалюминатный цемент, содержащий не менее 70% Al2O3, а в качестве высокоогнеупорного заполнителя на основе оксида алюминия - корунд, отличающаяся тем, что в качестве высокоогнеупорного заполнителя смесь содержит корунд с содержанием оксида алюминия 98,4% фракции 2-7 мм и фракции менее 0,05 мм, а также синтетическую плавленую алюмохромистую шпинель с содержанием Cr2O3 - 15-25 и Al2O3 - 75-85 фракции 0,5-1,5 мм при следующем соотношении компонентов, масс.%:
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ | 1999 |
|
RU2140407C1 |
ОГНЕУПОРНАЯ БЕТОННАЯ СМЕСЬ | 2006 |
|
RU2320617C2 |
Способ полимеризации хлоропрена | 1935 |
|
SU48283A1 |
CN 103274710 A1, 04.09.2013 | |||
УСТРОЙСТВО ДЛЯ ИМПУЛЬСНОГО РЕГУЛИРОВАНИЯ ТЯГОВЫХ ДВИГАТЕЛЕЙ | 1973 |
|
SU425827A1 |
Авторы
Даты
2017-07-17—Публикация
2016-05-26—Подача