Способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток Российский патент 2017 года по МПК G01N29/04 

Описание патента на изобретение RU2625613C1

Изобретение относится к области ультразвукового неразрушающего контроля.

Известен способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями [Пат. RU №2560754. Базулин Евгений Геннадьевич, Вопилкин Алексей Харитонович, Пронин Виталий Владимирович, Тихонов Дмитрий Сергеевич. Способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями. Опубл. 20.08.2015].

Недостатком способа является отсутствие учета изменения расстояния между призмами при проведении контроля, что приводит к ошибке определения толщины контролируемого изделия.

Наиболее близким, принятым за прототип, является способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями [Пат. RU №2560754. Базулин Евгений Геннадьевич, Вопилкин Алексей Харитонович, Пронин Виталий Владимирович, Тихонов Дмитрий Сергеевич. Способ ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями. Опубл. 20.08.2015].

Известный способ не позволяет уточнять расстояние между призмами при проведении контроля, что приводит к ошибке определения толщины контролируемого изделия.

Предложен способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток, заключающийся в том, что две антенные решетки, одна из которых излучатель, а вторая - приемник, устанавливают на наклонные призмы, обращенные передними гранями друг к другу, размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, излучают ультразвуковые импульсы в контролируемое изделие независимо и попеременно каждым из выбранных активных элементов излучающей решетки, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы заданными активными элементами регистрирующей решетки, восстанавливают множество парциальных изображений путем умножения матрицы принятых эхо-импульсов и матрицы сигналов, рассчитанных для каждой точки изображения для точечного отражателя с учетом трансформации типов волн при отражениях, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления, отличающейся тем, что с целью повышения точности определения профиля внутренней поверхности изделия в процессе проведения контроля регистрируют импульсы головных волн, сравнивают измеренные импульсы с рассчитанными в зависимости от оптимального расстояния между призмами и номинального значения скорости продольной волны в контролируемом изделии, минимизируя разницу между измеренными и рассчитанными импульсами головных волн, описываемых целевой функцией, определяют фактическое расстояние между призмами и реальное значение скорости продольной волны в объекте контроля.

Предлагаемый способ позволяет уточнять расстояние между призмами в процессе проведения контроля и корректировать номинальное значение скорости звука продольной волны в контролируемом изделии. Определяемые параметры позволяют повысить точность определения профиля внутренней поверхности.

Для пояснения описываемого способа:

На фигуре 1 приведены примеры зарегистрированных ультразвуковых эхо-импульсов, отраженных от донной поверхности объект контроля ОК, и ультразвуковых эхо-импульсов головных волн. На верхнем рисунке расстояние между призмами равно 0 мм, а на нижнем рисунке расстояние между призмами равно 40 мм.

На фигуре 2 приведена схема контроля с излучением и регистрацией эхо-импульсов головной волны элементами антенных решеток.

На фигуре 3 приведены изображения донной поверхности образца толщиной 18 мм по номинальным значениям расстояния между призмами и скорости звука в ОК (слева) и по их уточненным значениям (справа).

Предложенный способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток осуществляется следующим образом. Две идентичные антенные решетки (АР) устанавливают на идентичные наклонные призмы и располагают на поверхности образца так, чтобы призмы были обращены передними гранями друг к другу. Оптимальное расстояние между гранями призм с АР выбирают исходя из параметров АР (рабочей частоты, количества элементов, шага, ширины элемента, активной апертуры), призм (угла наклона, скорости продольной волны в призме) и объекта контроля (номинальная толщина). Одну АР используют в качестве излучателя ультразвуковых эхо-сигналов, а вторую АР - в качестве приемника. Каждый из выбранных активных элементов излучающей АР независимо и попеременно излучает ультразвуковые сигналы в ОК. Принимающая АР заданными активными элементами регистрирует ультразвуковые эхо-импульсы, отраженные от донной поверхности ОК, и ультразвуковые эхо-импульсы головных волн (фиг. 1).

Как видно из фиг. 2, время прихода импульсов головной волны от излучателя, расположенного в точке rt, до приемника, расположенного в точке rr, зависит от расстояния между призмами b и скорости продольной волны в ОК . Уточнение расстояния между призмами и скорости продольной волны в ОК основано на достижении максимального совпадения по заданному критерию измеренных эхосигналов p(rt, rr, t) и их оценки при вариации уточняемых параметров. Вектор, по которому происходит вариация, имеет обозначение . Критерием максимального совпадения измеренных эхосигналов и их оценки является минимизация целевой функции, в качестве которой является обратная функция корреляции:

где * - операция комплексного сопряжения.

Измеренные эхосигналы и их оценка переводится в комплексный формат с применением преобразования Гильберта.

Оценка импульсов головной волны проводится по формуле:

где s(t) - форма импульса головной волны, которую определяют по измеренным эхосигналам, t и r - номера излучающего и приемного элементов АР соответственно.

Для расчета градиента целевой функции применяют симплексный метод Нелдера-Мида. В случае с двумя переменными b и симплексом является треугольник, а схема поиска минимума заключается в сравнении вычисленных значений функции в вершинах треугольника и перемещении симплекса с помощью итерационной процедуры в направлении минимума.

Вычисленные значения расстояния между призмами и скорости продольной волны в ОК используются для определения профиля донной поверхности по сигналам, отраженным от донной поверхности с учетом трансформации типов волн, по методу, описанному в способе ультразвукового контроля профиля внутренней поверхности изделия с неровными поверхностями. На фигуре 3 слева показано изображение дна в образце толщиной 18 мм, восстановленное при измерении базы обычной линейкой и использовании справочной скорости звука, а на рисунке справа после определения скорости звука и базы по предложенному методу. В первом случае блики дна сместились вверх на 0,8 мм, а во втором случае блик находится точно на глубине 18 мм. Кроме того, форма блика на изображении слева не соответствует ровной донной поверхности, в отличии от изображения справа.

Предлагаемый способ может найти широкое применение в ультразвуковой дефектоскопии различных металлоконструкций для контроля профиля донной поверхности сварных соединений трубопроводов с наличием валика усиления с применением автоматизированных систем сканирования.

Таким образом, предлагаемый способ позволяет уточнить расстояние между призмами в процессе проведения контроля с применением сканирующих устройств для механического перемещения по поверхности ОК, а также скорректировать номинальную скорость продольной волны в ОК. Способ применяется для контроля профиля донной поверхности сварных соединений металлоконструкций с наличием внешнего валика усиления и позволяет обнаруживать вмятины, выемки, утонения, провисания, смещение кромок и др. с измерением их геометрических параметров.

Похожие патенты RU2625613C1

название год авторы номер документа
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПРОФИЛЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ИЗДЕЛИЯ С НЕРОВНЫМИ ПОВЕРХНОСТЯМИ 2014
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Пронин Виталий Владимирович
  • Тихонов Дмитрий Сергеевич
RU2560754C1
Способ выявления поперечно ориентированных дефектов при ультразвуковом сканировании изделия с отражающим дном 2015
  • Базулин Евгений Геннадиевич
  • Бутов Александр Витальевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2610516C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ОБЪЕКТОВ ИЗ ТВЁРДЫХ МАТЕРИАЛОВ, УЛЬТРАЗВУКОВОЙ ВЫСОКОЧАСТОТНЫЙ ПРЕОБРАЗОВАТЕЛЬ ДЛЯ ЕГО РЕАЛИЗАЦИИ (ВАРИАНТЫ) И АНТЕННАЯ РЕШЁТКА С ПРИМЕНЕНИЕМ СПОСОБА 2017
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Авдеев Андрей Андреевич
  • Беляев Николай Александрович
  • Козлов Антон Владимирович
RU2657325C1
КОМПЛЕКС ДЛЯ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ИЗДЕЛИЙ И ОПТИЧЕСКОЕ ИЗМЕРИТЕЛЬНОЕ УСТРОЙСТВО КОМПЛЕКСА 2012
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Станкевич Александр Михайлович
  • Алёхин Сергей Геннадиевич
  • Авдеев Андрей Андреевич
  • Ананьев Игорь Валерьевич
  • Бишко Александр Владимирович
  • Дурейко Андрей Владимирович
  • Елькин Виталий Михайлович
  • Жуков Андрей Владимирович
  • Заец Максим Васильевич
  • Илюхин Юрий Владимирович
  • Манеев Максим Владимирович
  • Соколов Никита Юрьевич
  • Суворов Вячеслав Андреевич
  • Черкасов Владимир Константинович
RU2515957C1
СПОСОБ КАЛИБРОВКИ УЛЬТРАЗВУКОВОЙ АНТЕННОЙ РЕШЕТКИ, УСТАНОВЛЕННОЙ НА ПРИЗМУ 2013
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2530181C1
Способ ультразвуковой томографии 2016
  • Соколов Игорь Вячеславович
  • Качанов Владимир Климентьевич
  • Караваев Михаил Алексеевич
  • Федоров Максим Борисович
  • Синицын Алексей Алексеевич
RU2639986C1
Способ определения типа отражателя по амплитуде рассеянных им ультразвуковых импульсов 2020
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2760508C1
Способ определения координаты отражателя в сечении, перпендикулярном сварному соединению по TOFD-эхосигналам 2020
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2740168C1
Способ создания неполной коммутационной матрицы при использовании антенных решеток 2016
  • Базулин Андрей Евгеньевич
  • Базулин Евгений Геннадиевич
  • Бутов Александр Витальевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2646955C1
УЛЬТРАЗВУКОВАЯ АНТЕННАЯ РЕШЁТКА 2016
  • Самокрутов Андрей Анатольевич
  • Шевалдыкин Виктор Гавриилович
  • Алёхин Сергей Геннадиевич
  • Заец Максим Васильевич
RU2629894C1

Иллюстрации к изобретению RU 2 625 613 C1

Реферат патента 2017 года Способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток

Использование: для ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения. Сущность изобретения заключается в том, что две антенные решетки размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы, восстанавливают множество парциальных изображений, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления. Технический результат: повышение точности определения профиля внутренней поверхности изделия. 3 ил.

Формула изобретения RU 2 625 613 C1

Способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток, заключающийся в том, что две антенные решетки, одна из которых излучатель, а вторая - приемник, устанавливают на наклонные призмы, обращенные передними гранями друг к другу, размещают на поверхности контролируемого изделия на оптимальном расстоянии между собой с двух сторон от сварного соединения, излучают ультразвуковые импульсы в контролируемое изделие независимо и попеременно каждым из выбранных активных элементов излучающей решетки, регистрируют отраженные от донной поверхности ультразвуковые эхо-импульсы заданными активными элементами регистрирующей решетки, восстанавливают множество парциальных изображений путем умножения матрицы принятых эхо-импульсов и матрицы сигналов, рассчитанных для каждой точки изображения для точечного отражателя с учетом трансформации типов волн при отражениях, получают изображение профиля донной поверхности, по которому находят таблицу значений толщины контролируемого изделия в каждой точке области восстановления, отличающейся тем, что с целью повышения точности определения профиля внутренней поверхности изделия в процессе проведения контроля регистрируют импульсы головных волн, сравнивают измеренные импульсы с рассчитанными в зависимости от оптимального расстояния между призмами и номинального значения скорости продольной волны в контролируемом изделии, минимизируя разницу между измеренными и рассчитанными импульсами головных волн, описываемых целевой функцией, определяют фактическое расстояние между призмами и реальное значение скорости продольной волны в объекте контроля.

Документы, цитированные в отчете о поиске Патент 2017 года RU2625613C1

СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПРОФИЛЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ИЗДЕЛИЯ С НЕРОВНЫМИ ПОВЕРХНОСТЯМИ 2014
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Пронин Виталий Владимирович
  • Тихонов Дмитрий Сергеевич
RU2560754C1
Способ ультразвукового томографического контроля изделий 1990
  • Осетров Александр Владимирович
  • Туржанский Антон Анатольевич
SU1817019A1
US 2010298713A1, 25.11.2010
US 2012150036A1, 14.06.2012.

RU 2 625 613 C1

Авторы

Базулин Андрей Евгеньевич

Базулин Евгений Геннадиевич

Вопилкин Алексей Харитонович

Пронин Виталий Владимирович

Тихонов Дмитрий Сергеевич

Даты

2017-07-17Публикация

2016-04-22Подача