СПОСОБ КАЛИБРОВКИ УЛЬТРАЗВУКОВОЙ АНТЕННОЙ РЕШЕТКИ, УСТАНОВЛЕННОЙ НА ПРИЗМУ Российский патент 2014 года по МПК G01N29/30 

Описание патента на изобретение RU2530181C1

Изобретение относится к области ультразвукового неразрушающего контроля.

Известен способ калибровки ультразвуковой антенной решетки, установленной на призму, осуществляемый за счет измерения скорости распространения ультразвуковых сигналов и их времени пробега в призме, реализованный в ультразвуковом дефектоскопе «OmniScan MX2» (См. официальный сайт фирмы OLYMPUS - http://www.olympus-ims.com/ru/omniscan-mx2/).

Недостатком способа является многоэтапное выполнение процедур измерения скорости распространения ультразвуковых сигналов и их времени пробега в призме, использование трех образцов, один из которых имеет сложную конструкцию, а также невозможность определения следующих параметров ультразвуковой антенной решетки, установленной на призму: стрела призмы, расстояние пробега в призме по центральному лучу, угол наклона призмы, время задержки в согласующем слое антенной решетки.

Наиболее близким, принятым за прототип, является способ калибровки ультразвуковой антенной решетки, установленной на призму, осуществляемый за счет измерения скорости распространения ультразвуковых сигналов и их времени пробега в призме, реализованный в ультразвуковом дефектоскопе «OmniScan MX2» (См. официальный сайт фирмы OLYMPUS - http://www.olympus-ims.com/ru/omniscan-mx2/).

Известный способ не позволяет определять следующие параметры ультразвуковой антенной решетки, установленной на призму: стрела призмы, расстояние пробега в призме по центральному лучу, угол наклона призмы, время задержки в согласующем слое антенной решетки.

Предложен способ калибровки ультразвуковой антенной решетки, установленной на призму, заключающийся в излучении ультразвуковых сигналов с помощью множества элементов антенной решетки в образец известной толщины и прием ультразвуковых сигналов, отраженных от отверстия бокового сверления известного диаметра на заданной глубине, регистрации множества ультразвуковых эхосигналов для выбранной конфигурации излучения и приема, определяемой списком пар излучающих и принимающих элементов, расчета оценки эхосигналов, зависящей от скорости звука в призме и ее геометрических параметров, сравнении между собой измеренных и рассчитанных эхосигналов, и поиска таких значений скорости звука в призме и ее геометрических параметров, которые обеспечивают минимальную разницу и которые будут считаться результатом калибровки, отличающийся тем, что в результате калибровки ультразвуковой антенной решетки определяются значения скорости продольной волны в призме, ее геометрические параметры и время пробега в протекторе антенной решетки.

Предлагаемый способ позволяет одновременно определять следующие параметры ультразвуковой антенной решетки, установленной на призму: скорость продольной волны в призме, стрелу призмы, расстояние пробега в призме по центральному лучу, угол наклона призмы, время задержки в согласующем слое антенной решетки. Определяемые параметры необходимы для расчета реальных координат центров пьезоэлементов с точностью одной восьмой длины волны с целью их дальнейшего введения в алгоритмы восстановления изображения и минимизации смещения координат восстановленного изображения от координат реального положения отражателей, что позволяет повысить эффективность применения методов когерентного восстановления изображения от отражателей, а значит повысить точность определения координат отражателей.

Для пояснения описываемого способа:

на фигуре 1 приведена фотография образца с установленной на него призмой без антенной решетки,

на фигуре 2 приведены результаты калибровки антенной решетки PE-5.0М32Е0.8Р №0334 на призме X-42-R420 №1,

на фигуре 3 приведены изображения отверстия бокового сверления в образце, восстановленные по паспортным данным и восстановленные по параметрам, определенным по итогам калибровки.

Предложенный способ калибровки осуществляется следующим образом.

Для проведения калибровки нужен специальный образец с отверстием бокового сверления. В качестве такого образца может выступить стальной образец (см. Фиг.1) толщиной 18 мм, в котором на глубине 12 мм просверлено отверстие бокового сверления диаметром 2 мм. Для фиксации призмы на калибровочном образце имеется упор. Для того чтобы расстояние xw от передней грани призмы до центра отверстия было калиброванной величиной, между упором образца и призмой можно вставлять вкладыши длиной 10 мм. Стенки образца должны быть параллельны с точностью не менее чем 0.01 мм на 100 мм, а скорости продольной и поперечной волны в образце должны быть измерены с точностью не менее 0.5%.

Антенная решетка на призме устанавливается на образец вплотную, либо к упору, либо к краю вкладыша. Рекомендуемое расстояние xw должно быть примерно равно расстоянию, при котором центральный луч попадает на дно под отверстием бокового сверления. Эхосигналы следует измерять с усилением, не допускающим возникновения нелинейных искажений. Способ калибровки основан на достижении максимального совпадения по заданному критерию измеренных эхосигналов p ( r t , r r , t ) и их оценки p ^ ( r t , r r , t ; v ) при вариации таких параметров как стрела призмы аw, расстояние пробега в призме рw, скорость звука в призме cw,l. Вектор, по которому происходит оптимизация, обозначим как v=(aw,pw,cw). Его размеры могут быть увеличены за счет включения дополнительных параметров для оптимизации, например угла наклона призмы βw, или времени пробега в протекторе tprot. Критерием максимального совпадения измеренных эхосигналов p ( r t , r r , t ) и их оценки p ^ ( r t , r r , t ; v ) может служить достижение минимума целевой функции D(v)

v = a r g m i n v = ( a w , p w , c w ) D ( p ( r t , r r , t ) , p ^ ( r t , r r , t ; v ) ) .

Далее целевую функцию D ( p ( r t , r r , t ) , p ^ ( r t , r r , t ; v ) ) будем обозначать как D(v). Если работать с комплексными сигналами, которые можно получить из обычных эхосигналов с помощью преобразования Гильберта, то целевую функцию можно представить в виде величины обратной функции корреляции D c ( v ) = 1 | p ( x , t ) p ^ ( x , t ; v ) d t d x | , где значок * означает операцию комплексного сопряжения.

В качестве примера работы предложенного способа приведем результаты калибровки антенной решетки PE-5.0М32Е0.8Р №0334 на призме X-42-R420 №1. Антенная решетка имеет рабочую частоту 5 МГц, расстояние между элементами равно 0.8 мм. Призма с углом наклона βw=42 градусов изготовлена из плексигласа. Оценка поля p ^ ( x , t ; v ) проводилась для прямого луча и однократно отраженного от дна образца. Результаты калибровки приведены (см. Фиг.2.).

Для оценки эффективности предложенной процедуры калибровки изображение отверстия бокового сверления в образце для калибровки восстанавливались методом M-C-SAFT по шести акустическим схемам на поперечных волнах по паспортным параметрам Ошибка! Источник ссылки не найден, и по параметрам, полученным после выполнения процедуры калибровки. Изображения, восстановленные по параметрам определенным по итогам калибровки, точнее соответствуют границе отверстия (см. Фиг.3.).

Таким образом, предлагаемый способ позволяет получать восстановленные изображения отражателей с отклонениями от мест реального расположения меньше четверти длины волны на эффективной части антенной решетки.

Похожие патенты RU2530181C1

название год авторы номер документа
Способ расчёта ошибки определения амплитуды блика точечного отражателя по изображению, восстановленному методом ЦФА, в зависимости от шага сетки изображения 2021
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2785223C1
Способ ультразвукового контроля профиля внутренней поверхности изделия в зоне сварного соединения с применением антенных решеток 2016
  • Базулин Андрей Евгеньевич
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Пронин Виталий Владимирович
  • Тихонов Дмитрий Сергеевич
RU2625613C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПРОФИЛЯ ВНУТРЕННЕЙ ПОВЕРХНОСТИ ИЗДЕЛИЯ С НЕРОВНЫМИ ПОВЕРХНОСТЯМИ 2014
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Пронин Виталий Владимирович
  • Тихонов Дмитрий Сергеевич
RU2560754C1
СПОСОБ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ СТЕПЕНИ ПОВРЕЖДЕННОСТИ МЕТАЛЛОВ КОНТЕЙНЕРОВ 2015
  • Ларионов Виталий Васильевич
  • Лидер Андрей Маркович
  • Седнев Дмитрий Андреевич
  • Болотина Ирина Олеговна
  • Салчак Яна Алексеевна
RU2614186C1
Способ определения координаты отражателя в сечении, перпендикулярном сварному соединению по TOFD-эхосигналам 2020
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2740168C1
Способ увеличения динамического диапазона сигналов измеряемых при проведении ультразвукового контроля 2016
  • Базулин Андрей Евгеньевич
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2649028C1
Способ акустического контроля трубопровода 2024
  • Ворончихин Станислав Юрьевич
  • Муравьева Ольга Владимировна
  • Самокрутов Андрей Анатольевич
RU2826796C1
Способ определения типа отражателя по амплитуде рассеянных им ультразвуковых импульсов 2020
  • Базулин Евгений Геннадиевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2760508C1
Способ подбора пути ультразвуковой волны в призме, угла и стрелы призмы преобразователя ультразвукового дефектоскопа ультразвуковой антенной решетки, установленной на призму 2024
  • Базулин Евгений Геннадиевич
  • Бутов Александр Витальевич
  • Вопилкин Алексей Харитонович
  • Тихонов Дмитрий Сергеевич
RU2822293C1
Способ определения структурных характеристик изделий из полимерных композиционных материалов и устройство для его осуществления 2023
  • Смотрова Светлана Александровна
RU2809932C1

Иллюстрации к изобретению RU 2 530 181 C1

Реферат патента 2014 года СПОСОБ КАЛИБРОВКИ УЛЬТРАЗВУКОВОЙ АНТЕННОЙ РЕШЕТКИ, УСТАНОВЛЕННОЙ НА ПРИЗМУ

Использование: для калибровки ультразвуковой антенной решетки, установленной на призму. Сущность изобретения заключается в том, что излучают ультразвуковые сигналы с помощью множества элементов антенной решетки в образец известной толщины и принимают ультразвуковые сигналы, отраженные от отверстия бокового сверления известного диаметра на заданной глубине, регистрируют множество ультразвуковых эхосигналов для выбранной конфигурации излучения и приема, определяемой списком пар излучающих и принимающих элементов, рассчитывают параметры эхосигналов в зависимости от скорости звука в призме и ее геометрических параметров, сравнивают между собой измеренные и рассчитанные эхосигналы и производят поиск такого значения скорости продольной ультразвуковой волны в призме и ее геометрические параметры, которые обеспечивают минимальную разницу и которые будут считаться результатом калибровки, при этом в результате калибровки ультразвуковой антенной решетки определяется также время пробега в протекторе антенной решетки. Технический результат: обеспечение возможности определения реальных координат центров пьезоэлементов с точностью одной восьмой длины волны. 3 ил.

Формула изобретения RU 2 530 181 C1

Способ калибровки ультразвуковой антенной решетки, установленной на призму, заключающийся в излучении ультразвуковых сигналов с помощью множества элементов антенной решетки в образец известной толщины и прием ультразвуковых сигналов, отраженных от отверстия бокового сверления известного диаметра на заданной глубине, регистрации множества ультразвуковых эхосигналов для выбранной конфигурации излучения и приема, определяемой списком пар излучающих и принимающих элементов, расчета оценки эхосигналов, зависящей от скорости звука в призме и ее геометрических параметров, сравнении между собой измеренных и рассчитанных эхосигналов, и поиска таких значений скорости звука в призме и ее геометрических параметров, которые обеспечивают минимальную разницу и которые будут считаться результатом калибровки,
отличающийся тем, что в результате калибровки ультразвуковой антенной решетки определяются значения скорости продольной волны в призме, ее геометрические параметры и время пробега в протекторе антенной решетки.

Документы, цитированные в отчете о поиске Патент 2014 года RU2530181C1

В.В.Клюев, Неразрушающий контроль и диагностика, Москва, Издательство "Машиностроение", 1995, стр
Переносный кухонный очаг 1919
  • Вейсбрут Н.Г.
SU180A1
Аппарат для непрерывного разваривания сырья в спиртовом производстве 1959
  • Веселовский В.М.
SU124397A1
СПОСОБ ИЗГОТОВЛЕНИЯ ОБРАЗЦОВ ДЛЯ НЕРАЗРУШАЮЩЕГО КОНТРОЛЯ 2007
  • Ваганов Виктор Андреевич
  • Колесов Эдуард Алексеевич
  • Кащеев Владимир Викторович
  • Костюк Дмитрий Григорьевич
RU2346268C1
Устройство для транспортирования в горизонтальном направлении листового стекла, отформованного на прокатной или другой машине 1955
  • Бетьюн Пилькингтон
  • Кеннет Бикерсстаф
  • Лайонель Александер
SU114373A3
US 4576034A, 18.03.1986
US 20120057428A1, 08.03.2012

RU 2 530 181 C1

Авторы

Базулин Евгений Геннадиевич

Вопилкин Алексей Харитонович

Тихонов Дмитрий Сергеевич

Даты

2014-10-10Публикация

2013-05-15Подача