СПОСОБ ПРОИЗВОДСТВА ШТАПЕЛЬНОГО НАНОТОНКОГО МИНЕРАЛЬНОГО ВОЛОКНА И ОБОРУДОВАНИЕ ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ Российский патент 2017 года по МПК D01G1/00 B82B3/00 

Описание патента на изобретение RU2628856C2

Способ производства штапельного нанотонкого минерального волокна и оборудование для его изготовления.

Изобретение относится к производству штапельного минерального волокна, в частности к конструкции соплового аппарата с валковым вытяжным механизмом и прижимной планкой, и может быть использовано на предприятиях, занимающихся получением штапельных минеральных волокон. Настоящее изобретение дает возможность получения нановолокон с последующей реализацией в области нанотехнологий по изготовлению бумагоподобных композиционных фильтровальных материалов для сверхтонкой очистки фильтруемых сред.

Наиболее близким к предложенному способу является способ получения микротонких волокон из стекла (а.с. СССР №528270 от 27.03.74.) с использованием камеры сгорания для получения штапельного микро- и ультратонкого волокна из неорганических расплавов с двумя сопловыми аппаратами, верхние части которых закреплены жёстко, а нижние части имеют возможность перемещаться по вертикали.

Данная конструкция не может обеспечить получение нанотонкого волокна, так как при повышенном давлении в камере сгорания сдвигающаяся нижняя часть соплового аппарата не обеспечивает постоянно плотного прилегания к фланцу установки соплового аппарата и при выгорании прокладки вокруг его нижней части прорываются горячие газы. Так же конструкция не обеспечивает точного попадания первичного волокна в начало образования стехиометрического конуса для наиболее эффективного использования мощности энергоносителя.

Цель изобретения - производство нанотонкого волокна (диаметром около 100 нм) - достигается тем, что на водоохлаждаемую камеру сгорания 1 (Фиг. 1, Фиг. 2), футерованную внутри огнеупорной керамикой 17 (Фиг. 2), устанавливается один сопловой аппарат 19 (Фиг. 1) с каналами охлаждения 18 (Фиг. 2, Фиг. 3, Фиг. 4) и заранее выставленным зазором сопла 20 (Фиг. 2) для выхода потока энергоносителя 2 (Фиг. 1, Фиг. 3, Фиг. 4), жёстко закрепляя его верхнюю 3 (Фиг. 2, Фиг. 3, Фиг. 4) и нижнюю 4 (Фиг. 2, Фиг. 3, Фиг. 4) части к водоохлаждаемому фланцу для установки соплового аппарата 14 (Фиг. 1, Фиг. 2), что дает возможность увеличить давление в камере сгорания без выгорания прокладки 5 (Фиг. 2) и, как следствие, скорость выхода потока энергоносителя 2 (Фиг. 1, Фиг. 3, Фиг. 4).

С целью более точного попадания первичного волокна 1 (Фиг. 1, Фиг. 3, Фиг. 4) в начало стехиометрического конуса 9 (Фиг. 3, Фиг. 4), для максимально эффективного раздува, прижимная планка 7 (Фиг. 2, Фиг. 3, Фиг. 4) установлена с возможностью ее регулировки по высоте прижима первичных нитей и регулировки ширины щели волокнопровода 8 (Фиг. 3, Фиг. 4) перед потоком энергоносителя 2 (Фиг. 1, Фиг. 3, Фиг. 4).

Для устранения отгибания первичного волокна 1 (Фиг. 1, Фиг. 3, Фиг. 4) на входе в скоростной поток энергоносителя 2 (Фиг. 1, Фиг. 3, Фиг. 4), при уменьшении диаметра данного волокна, используется регулировка скорости вращения валков вытяжного механизма 6 (Фиг. 1, Фиг. 2, Фиг. 3). Уменьшение оборотов валков приводит к уменьшению скорости подачи первичных волокон 1 (Фиг. 1, Фиг. 3, Фиг. 4) и увеличению их диаметра, а следовательно, и возможности первичных волокон отгибаться при входе в поток энергоносителя 2 (Фиг. 1, Фиг. 3, Фиг. 4).

При возникающей возможности увеличения давления в камере сгорания 13 (Фиг. 1, Фиг. 2) данная конструкция соплового аппарата 19 (Фиг. 1) с регулируемой по высоте прижимной планкой 7 (Фиг. 2, Фиг. 3, Фиг. 4), регулируемой по ширине щелью волокнопровода 8 (Фиг. 3, Фиг. 4) и частотным приводом валков вытяжного механизма 6 (Фиг. 1, Фиг. 2, Фиг. 3) позволяет применить плотную раскладку первичных волокон на верхней 12 (Фиг. 1) и нижней 11 (Фиг. 1, Фиг. 3) распределительных гребёнках (шаг - 1,25 мм) для увеличения производительности процесса.

Производство минеральных нановолокон осуществляется следующим способом.

Многофильерный стеклоплавильный сосуд 15 (Фиг. 1) загружается шариками или эрклезом неорганического расплава, где расплав, вытекая через фильеры, вытягивается вытяжным валковым механизмом 6 (Фиг. 1, Фиг. 2, Фиг. 3) в первичное волокно 1 (Фиг. 1, Фиг. 3, Фиг. 4). Первичное волокно, выходя из валкового механизма, поджатое прижимной планкой 7 (Фиг. 2, Фиг. 3, Фиг. 4) щели волокнопровода 8 (Фиг. 3, Фиг. 4), входит в стехиометрический конус 9 (Фиг. 3, Фиг. 4) скоростного потока энергоносителя 2 (Фиг. 1, Фиг. 3, Фиг. 4), выходящего из соплового аппарата 19 (Фиг. 1), состоящего из верхней 3 (Фиг. 2, Фиг. 3 Фиг. 4) и нижней 4 (Фиг. 2 Фиг. 3, Фиг. 4) частей и заранее, при сборке соплового аппарата, выставленным зазором 20 (Фиг. 2), где раздувается и вытягивается в скоростном потоке энергоносителя 2 (Фиг. 1). Далее, штапельные нановолокна попадает в камеру волокноосаждения 16 (Фиг. 1) и на приёмный конвейер. Продукты сгорания через сетчатый конвейер дымососом выносятся в атмосферу.

Похожие патенты RU2628856C2

название год авторы номер документа
МНОГОФИЛЬЕРНЫЙ ЩЕЛЕВОЙ ПИТАТЕЛЬ ДЛЯ ФОРМОВАНИЯ ВОЛОКНА ИЗ РАСПЛАВА ГОРНЫХ ПОРОД 2016
  • Дубовый Владимир Климентьевич
  • Петунов Владимир Тимофеевич
  • Дубовой Евгений Владимирович
RU2618256C1
БУМАГОПОДОБНЫЙ НАНОКОМПОЗИТ НА ОСНОВЕ МИНЕРАЛЬНЫХ ВОЛОКОН И НЕОРГАНИЧЕСКИХ СВЯЗУЮЩИХ 2011
  • Дубовый Владимир Климентьевич
RU2478747C2
ЭЛЕКТРОКЕРАМИЧЕСКАЯ ПЕЧЬ С КОСВЕННЫМ НАГРЕВОМ ДЛЯ ФОРМОВАНИЯ НЕПРЕРЫВНЫХ И ШТАПЕЛЬНЫХ СТЕКЛЯННЫХ ВОЛОКОН 2014
  • Черняков Рафаил Григорьевич
  • Петунов Владимир Тимофеевич
  • Дубовый Владимир Климентьевич
RU2560761C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ШТАПЕЛЬНОГО БАЗАЛЬТОВОГО ВОЛОКНА 2016
  • Шайхразиев Фаат Фатыхович
  • Шайхразиев Марсель Фатыхович
  • Никулин Сергей Алексеевич
  • Сентяков Борис Анатольевич
  • Сентяков Кирилл Борисович
  • Элбакян Анри Гамлетович
RU2731237C2
БУМАГОПОДОБНЫЙ КОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ МИНЕРАЛЬНЫХ ВОЛОКОН С ИСПОЛЬЗОВАНИЕМ В КАЧЕСТВЕ СВЯЗУЮЩЕГО СОЛЕЙ АЛЮМИНИЯ И ПОЛИВИНИЛАЦЕТАТНОЙ ЭМУЛЬСИИ (ПВАЭ) 2010
  • Дубовый Владимир Климентьевич
  • Кобылин Рудольф Анатольевич
  • Свиридов Евгений Борисович
  • Смолин Александр Семенович
  • Хованский Владимир Валентинович
RU2425919C1
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ ВОЛОКНА ИЗ РАСПЛАВА 2018
  • Шайхразиев Фаат Фатыхович
  • Шайхразиев Марсель Фаатович
  • Сентяков Борис Анатольевич
  • Сентяков Кирилл Борисович
RU2700130C1
БУМАГОПОДОБНЫЙ НАНОКОМПОЗИЦИОННЫЙ МАТЕРИАЛ НА ОСНОВЕ МИНЕРАЛЬНЫХ ВОЛОКОН ДЛЯ УСТАНОВОК ОХЛАЖДЕНИЯ ВОЗДУХА ИСПАРИТЕЛЬНОГО ТИПА 2015
  • Дубовой Евгений Владимирович
  • Дубовый Владимир Климентьевич
RU2618722C1
Устройство для получения штапельного волокна 1978
  • Розора Василий Федорович
  • Шевчук Евгений Николаевич
  • Баранов Борис Алексеевич
SU785253A1
СПОСОБ ПРОИЗВОДСТВА БАЗАЛЬТОВЫХ ВОЛОКОН И ОБОРУДОВАНИЕ ДЛЯ ИХ ИЗГОТОВЛЕНИЯ 2013
  • Безлаковский Антон Игоревич
  • Дубовый Владимир Климентьевич
  • Петунов Владимир Тимофеевич
  • Черняков Рафаил Григорьевич
RU2561070C2
УСТРОЙСТВО ДЛЯ ПОЛУЧЕНИЯ МИНЕРАЛЬНЫХ ВОЛОКОН 2005
  • Поповский Владимир Михайлович
  • Мали Вячеслав Иосифович
RU2329957C2

Иллюстрации к изобретению RU 2 628 856 C2

Реферат патента 2017 года СПОСОБ ПРОИЗВОДСТВА ШТАПЕЛЬНОГО НАНОТОНКОГО МИНЕРАЛЬНОГО ВОЛОКНА И ОБОРУДОВАНИЕ ДЛЯ ЕГО ИЗГОТОВЛЕНИЯ

Способ производства штапельного нанотонкого минерального волокна и оборудование для его изготовления. Изобретение относится к производству штапельного минерального волокна, в частности к конструкции соплового аппарата с валковым вытяжным механизмом и прижимной планкой, и может быть использовано на предприятиях, занимающихся получением штапельных минеральных волокон. Настоящее изобретение дает возможность получения нановолокон с последующей реализацией в области нанотехнологий по изготовлению бумагоподобных композиционных фильтровальных материалов для сверхтонкой очистки фильтруемых сред. Результат изобретения - получение нанотонкого волокна (диаметром около 100 нм) - достигается тем, что на водоохлаждаемую камеру сгорания, футерованную внутри огнеупорной керамикой, устанавливается один сопловой аппарат с целью увеличения в ней давления (соответственно - скорости потока энергоносителя) для возможности раздува первичных минеральных волокон до наноразмера с неподвижными, относительно друг друга, верхней и нижней частями (что исключает прогорание прокладок между сопловым аппаратом и фланцем камеры сгорания), с валковым вытяжным механизмом с регулированием скорости вращения и с прижимной планкой, установленной с возможностью её регулировки по высоте прижима и по ширине щели волокнопровода для точного попадания первичных минеральных волокон в начало стехиометрического конуса, с пошаговой укладкой первичных минеральных волокон через шаг - 1,25 мм на распределительные гребёнки для увеличения производительности по волокну. 2 н.п. ф-лы, 4 ил.

Формула изобретения RU 2 628 856 C2

1. Способ производства штапельного нанотонкого минерального волокна, отличающийся тем, что подают первичные волокна строго в начало стехиометрического конуса потока энергоносителя, при этом на камеру сгорания устанавливают один сопловой аппарат с заранее выставленным зазором для выхода потока энергоносителя с целью увеличения в ней давления (соответственно - скорости потока энергоносителя) и, таким образом, раздувают первичные минеральные волокна до наноразмера с неподвижными, относительно друг друга, верхней и нижней частями (что исключает прогорание прокладок между сопловым аппаратом и фланцем камеры сгорания), при этом регулируют скорость вращения валков для регулировки (варьирования) диаметра первичных нитей, а также устанавливают прижимную планку с возможностью регулировки ширины волокнопровода и регулировки по высоте прижима первичных нитей, что позволяет осуществить точное попадание их в начало стехиометрического конуса, с пошаговой укладкой первичных минеральных волокон через шаг - 1,25 мм на распределительные гребёнки (для увеличения производительности по волокну).

2. Оборудование для производства штапельного нанотонкого минерального волокна, отличающееся тем, что на камеру сгорания устанавливается один сопловой аппарат с целью увеличения в ней давления для возможности раздува первичных минеральных волокон до наноразмера с неподвижными, относительно друг друга, верхней и нижней частями, с валковым вытяжным механизмом с регулированием скорости вращения и с прижимной планкой, установленной с возможностью ее регулировки по высоте прижима и по ширине щели волокнопровода для точного попадания первичных минеральных волокон в начало стехиометрического конуса, с пошаговой укладкой первичных минеральных волокон через шаг - 1,25 мм на распределительные гребёнки для увеличения производительности по волокну.

Документы, цитированные в отчете о поиске Патент 2017 года RU2628856C2

Камера сгорания для получения штапельного микро- и ультратонкого волокна из неорганических расплавов 1974
  • Улыбышев Владимир Васильевич
  • Кибардин Рудольф Николаевич
  • Лебедев Михаил Николаевич
  • Попов Ленмир Васильевич
  • Рувинов Ирсил Исакович
  • Худяков Михаил Михайлович
SU528270A1
Способ производства штапельного супертонкого волокна 1974
  • Полевой Петр Петрович
  • Полевой Ренат Петрович
  • Джигирис Дмитрий Данилович
SU536130A1
Устройство для получения супертонкого минерального волокна 1984
  • Матусевич Александр Сергеевич
  • Иванчук Дмитрий Филиппович
  • Джигирис Дмитрий Данилович
  • Козловский Петр Платонович
SU1158507A1
Камера сгорания для производства супертонкого волокна 1990
  • Чуприянов Юрий Петрович
SU1730060A1
US 7455854 B2, 25.11.2008.

RU 2 628 856 C2

Авторы

Дубовой Евгений Владимирович

Сысоева Наталья Владимировна

Петунов Владимир Тимофеевич

Дубовый Владимир Климентьевич

Даты

2017-08-22Публикация

2015-09-07Подача