СПОСОБ УТИЛИЗАЦИИ УГЛЕРОДСОДЕРЖАЩИХ ОТХОДОВ Российский патент 2017 года по МПК B09B3/00 

Описание патента на изобретение RU2629666C1

Предлагаемое изобретение относится к способам утилизации углеродсодержащих отходов, конкретно, отработавших газов газотурбинных установок (далее - ГТУ), использующих в качестве топлива природный газ (метан).

Известны способы нейтрализации отработавших газов ГТУ (см., например, патент РФ №2334546 на изобретение «Способ очистки выхлопных газов газотурбинных установок от вредных примесей»). В указанном способе выхлопной газ из ГТУ очищают от оксида углерода воздействием плазмы стриммерного разряда. В этом способе дожигается моноксид углерода (CO), а также отмывается NOx раствором карбамида. При этом вредные выбросы CO2 не удаляются и не связываются, а поступают в атмосферу.

Известен также способ утилизации выхлопных газов ГТУ, которая оборудована котлом-утилизатором и аппаратом для получения жидкой углекислоты из дымовых газов (см. патент РФ на полезную модель №61814). Данная полезная модель решает задачу повышения коэффициента использования тепловой энергии от сжигания топлива. Углекислота не связывается, а накапливается в жидком виде, после чего она попадает в атмосферу при использовании ее в качестве технического газа (например, при сварке в среде защитного газа CO2). Т.е. эмиссии CO2 в окружающую среду не снижаются.

В указанных способах выделяется, но не утилизируется ценный (способный к извлечению выгоды) углеродсодержащий компонент выхлопных газов ГТУ - диоксид углерода, содержание которого может доходить до 30%, в зависимости от месторождения природного газа.

Известен способ получения метанола, в котором оксид углерода нагревают, сжимают и смешивают с метаном (см., например, патент РФ на изобретение №2568113). Недостатком данного способа является то, что для получения метанола, который затем применяют как моторное топливо, используют метан, который добывают с целью использования в качестве топлива. При этом часть метана требуется сжигать для получения тепла, необходимого для синтеза CO и метанола. Указанный недостаток повышает стоимость полученного метанола.

Наиболее близкой к предлагаемому изобретению является заявка на изобретение №2011141165/13 «Способ утилизации углеродсодержащих отходов», опубл. 2013 г. Указанный способ включает термическую газификацию углеродсодержащих отходов с получением синтез газа, охлаждение синтез газа, каталитический синтез метанола на основе синтез газа. К недостаткам прототипа относится то, что для обеспечения термической газификации требуется добавлять в отходы горючие добавки с высокой калорийностью (не менее 10 МДж/кг). Кроме того, для обеспечения нужного соотношения водорода к оксиду углерода состав синтез газа необходимо корректировать путем паровой конверсии части оксида углерода в диоксид углерода. Указанные недостатки усложняют технологию получения метанола из отходов, повышают стоимость конечного продукта.

Технической задачей, на решение которой направлено заявляемое изобретение, является упрощение способа переработки углеродсодержащих отходов в метанол, снижение стоимости конечного продукта, а также исключение сжигания дополнительных объемов первичного энергоносителя.

Технический результат достигается тем, что в способе утилизации углеродсодержащих отходов, включающем отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты, в качестве отходов используют отработавшие газы из газотурбинных установок газоперекачивающих компрессорных станций (далее - ГКС) магистральных газопроводов, из указанных газов отбирают диоксид углерода, который охлаждают в теплообменнике газотурбинной установки, затем гидрируют на медьсодержащем катализаторе в реакторе для синтеза метанола, причем водород для гидрирования диоксида углерода получают путем высокотемпературного электролиза воды на кислородпроводящей мембране, требуемую температуру электролиза поддерживают за счет тепла, выделяющегося в теплообменнике газотурбинной установки при охлаждении диоксида углерода, при этом кислород, отделяемый попутно при помощи указанной мембраны, добавляют в природный газ, направляемый в качестве топлива для газотурбинной установки.

Кроме того, в указанном способе для синтеза метанола применяется медь-цинк-алюминиевый катализатор состава Cu-ZnO-Al2O3.

Предлагаемый способ осуществляется следующим образом. Синтез метанола в предлагаемом способе основан на процессе каталитического гидрирования диоксида углерода CO2 до получения метанола СН3ОН. Основная реакция, проходящая в процессе синтеза метанола, описывается уравнением .

Из уровня техники известно, что если синтез-газ содержит значительные концентрации CO2, то синтез метанола осуществляется главным образом гидрированием СО2, в то время как CO участвует в основном в реакции паровой конверсии CO. Катализаторы синтеза метанола из углекислого газа известны. В данном синтезе проявляют активность те же катализаторы, что и в процессе получения метанола из синтез-газа.

Катализатор CuO-ZnO-Al2O3 является достаточно распространенным катализатором синтеза метанола (далее - КСМ). Каталитическая активность данного катализатора зависит от соотношения Cu/Zn/Al, а также от условий его получения (количественный состав катализатора является предметом ноу-хау заявителя).

Проверка предлагаемого способа проводилась на экспериментальной проточной установке. Скорость подачи реагентов контролировалась регуляторами массового расхода Mini CORI-FLOW (Bronkhorst). Поданная в установку смесь реагентов направлялась в снабженный подогревателем реактор, содержащий слой катализатора CuO-ZnO-Al2O3. Реактор соединен с системой разделения продуктов синтеза, включающей холодильник для конденсации полученного метанола. В установке была проведена опытная проверка предлагаемого к патентованию способа. Для синтеза метанола из диоксида углерода в установку в течение часа подавали азот и водород со скоростью 5 г/ч и 0.3 г/ч соответственно, одновременно поднимая температуру в реакторе, содержащем катализатор, до 250°C для восстановления CuO в катализаторе до активных медных центров. Затем поднимали давление в реакторе до 50 атм путем подачи водорода и диоксида углерода из баллонов со скоростью 0.85 г/ч и 5 г/ч соответственно (молярное соотношение 3.7:1). Синтез метанола проводили в течение трех часов при температуре в реакторе 250°C. Выходящую из установки смесь анализировали на газовом хроматографе Agilent 7890А (см. чертеж). Данные газовой хроматографии свидетельствуют об эффективности используемого катализатора. Метанол конденсировали при комнатной температуре на ледяной бане. Результаты экспериментальной проверки предлагаемого способа подтвердили правильность выбранных технических решений.

Предлагаемый способ имеет ряд преимуществ по сравнению с прототипом. В предлагаемом способе углеродсодержащую компоненту (диоксид углерода) отбирают непосредственно из горячих отработавших газов ГТУ ГКС. Водород получают путем электролиза воды, нагретой теплом раскаленных отработавших газов. Часть тепла используют для подогрева реактора при синтезе. «Попутный» кислород добавляют в «моторный» природный газ, повышая эффективность его сжигания в ГТУ. Таким образом, в предлагаемом способе используют «даровые» углеродсодержащие отходы и «бросовое» тепло отработавших газов из ГТУ ГКС, что является неочевидным в технологии утилизации CO2. При этом синтез метанола упрощается за счет гидрирования «дарового» диоксида углерода, что снижает стоимость конечного продукта.

В соответствии с описанной выше схемой разрабатывается сметно-проектная документация для строительства промышленной установки для переработки диоксида углерода из отработавших газов ГТУ в метанол.

Похожие патенты RU2629666C1

название год авторы номер документа
Катализатор для селективного гидрирования диоксида углерода с получением метанола 2023
  • Кустов Александр Леонидович
  • Прибытков Петр Вадимович
  • Тедеева Марина Анатольевна
  • Кустов Леонид Модестович
  • Шаталов Алексей Николаевич
  • Соловьев Валерий Владимирович
RU2804195C1
СПОСОБ ПРЕОБРАЗОВАНИЯ ИСХОДНОГО ТОПЛИВА ВО ВТОРИЧНОЕ ТОПЛИВО (ВАРИАНТЫ) 2012
  • Каннингем Стивен Л.
  • Стюарт Мартин А.
RU2635566C2
СПОСОБ ПОЛУЧЕНИЯ МОТОРНЫХ ТОПЛИВ 2005
  • Плаченов Борис Тихонович
  • Филимонов Юрий Николаевич
  • Пинчук Владимир Афанасьевич
  • Барунин Анатолий Анатольевич
  • Кехва Тоомас Эрнстович
  • Лебедев Виктор Николаевич
  • Красник Валерьян Вигдорович
  • Никотин Олег Павлович
  • Киселев Алексей Петрович
  • Юнаков Леонид Павлович
  • Анискевич Юлия Владимировна
RU2286327C1
СПОСОБ ПОЛУЧЕНИЯ ВОДОРОДА 2012
  • Столяревский Анатолий Яковлевич
RU2497748C1
УСТАНОВКА ДЛЯ ПОЛУЧЕНИЯ ЖИДКИХ УГЛЕВОДОРОДОВ ИЗ БИОМАССЫ 2018
  • Зайченко Виктор Михайлович
  • Лищинер Иосиф Израилевич
  • Малова Ольга Васильевна
  • Тарасов Андрей Леонидович
  • Качалов Владимир Викторович
  • Ларина Ольга Михайловна
RU2674158C1
Способ получения синтез-газа из CO 2016
  • Тарасов Андрей Леонидович
  • Кустов Леонид Модестович
RU2632701C1
СПОСОБ ПЕРЕРАБОТКИ ОРГАНИЧЕСКОГО СЫРЬЯ (ВАРИАНТЫ) 2011
  • Мысов Владислав Михайлович
  • Лукашов Владимир Петрович
  • Фомин Владимир Викторович
  • Ионе Казимира Гавриловна
  • Ващенко Сергей Петрович
  • Соломичев Максим Николаевич
RU2458966C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАНОЛА ИЗ ДИОКСИДА УГЛЕРОДА И ВОДОРОДА С КОЛИЧЕСТВЕННОЙ УТИЛИЗАЦИЕЙ ДИОКСИДА УГЛЕРОДА 2021
  • Викари, Максимилиан
  • Бритциус, Зюзанне
  • Райнинг, Свен
  • Катц, Торстен
  • Гейгер, Томас
  • Мейер, Геральд
RU2824923C1
СПОСОБ ПОЛУЧЕНИЯ МЕТАНОЛА И УГЛЕВОДОРОДОВ БЕНЗИНОВОГО РЯДА ИЗ СИНТЕЗ-ГАЗА 2015
  • Кротов Михаил Федорович
  • Малова Ольга Васильевна
  • Тарасов Андрей Леонидович
  • Лищинер Иосиф Израилевич
RU2610277C1
СПОСОБ ПОЛУЧЕНИЯ МОТОРНОГО ТОПЛИВА 2013
  • Столяревский Анатолий Яковлевич
RU2526040C1

Иллюстрации к изобретению RU 2 629 666 C1

Реферат патента 2017 года СПОСОБ УТИЛИЗАЦИИ УГЛЕРОДСОДЕРЖАЩИХ ОТХОДОВ

Способ утилизации углеродсодержащих отходов включает отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты. В качестве отходов используют отработавшие газы из газотурбинных установок газоперекачивающих компрессорных станций магистральных газопроводов. Из указанных газов отбирают диоксид углерода, который охлаждают в теплообменнике газотурбинной установки, затем гидрируют на медьсодержащем катализаторе в реакторе для синтеза метанола. Водород для гидрирования диоксида углерода получают путем высокотемпературного электролиза воды на кислородопроводящей мембране. Требуемую температуру электролиза поддерживают за счет тепла, выделяющегося в теплообменнике газотурбинной установки при охлаждении диоксида углерода. Кислород, отделяемый попутно при помощи мембраны, добавляют в природный газ, направляемый в качестве топлива для газотурбинной установки. Использование данного способа обеспечивает упрощение утилизации углеродсодержащих отходов и снижение стоимости метанола. 1 з.п. ф-лы, 1 ил.

Формула изобретения RU 2 629 666 C1

1. Способ утилизации углеродсодержащих отходов, включающий отбор углеродсодержащей компоненты из отходов, охлаждение углеродсодержащей компоненты, каталитический синтез метанола из углеродсодержащей компоненты, отличающийся тем, что в качестве отходов используют отработавшие газы из газотурбинных установок газоперекачивающих компрессорных станций магистральных газопроводов, из указанных газов отбирают диоксид углерода, который охлаждают в теплообменнике газотурбинной установки, затем гидрируют на медьсодержащем катализаторе в реакторе для синтеза метанола, причем водород для гидрирования диоксида углерода получают путем высокотемпературного электролиза воды на кислородпроводящей мембране, требуемую температуру электролиза поддерживают за счет тепла, выделяющегося в теплообменнике газотурбинной установки при охлаждении диоксида углерода, при этом кислород, отделяемый попутно при помощи указанной мембраны, добавляют в природный газ, направляемый в качестве топлива для газотурбинной установки.

2. Способ утилизации углеродсодержащих отходов по п. 1, отличающийся тем, что для синтеза метанола применяют медь-цинк-алюминиевый катализатор состава Cu-ZnO-Al2O3.

Документы, цитированные в отчете о поиске Патент 2017 года RU2629666C1

Способ записи неподвижных изображений на бумагу магнитными чернилами и устройство для его осуществления 1961
  • Арутюнов М.Г.
  • Патрунов В.Г.
SU147225A1
СПОСОБ ПЕРЕРАБОТКИ ГОРЮЧИХ УГЛЕРОД- И/ИЛИ УГЛЕВОДОРОДСОДЕРЖАЩИХ ПРОДУКТОВ, РЕАКТОР ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ (ВАРИАНТЫ) И УСТАНОВКА ДЛЯ ПЕРЕРАБОТКИ ГОРЮЧИХ УГЛЕРОД- И/ИЛИ УГЛЕВОДОРОДСОДЕРЖАЩИХ ПРОДУКТОВ 2012
  • Анигуркин Максим Викторович
  • Важненков Алексей Алексеевич
  • Гопоненко Евгений Трофимович
  • Ерусланов Алексей Васильевич
  • Панфилов Вячеслав Александрович
  • Рассохин Игорь Васильевич
RU2495076C1
WO 1994025415 A1, 10.11.1994
US 5134944 A1, 04.08.1992.

RU 2 629 666 C1

Авторы

Гайдт Давид Давидович

Мишин Олег Леонидович

Чарушин Валерий Николаевич

Русинов Геннадий Леонидович

Демин Анатолий Константинович

Зайков Юрий Павлович

Даты

2017-08-31Публикация

2016-12-28Подача