METHOD OF COMPENSATING FOR THERMAL BENDING AND DEFORMATION OF LASER GYROSCOPE MONOBLOCK OPTICAL CHANNELS Russian patent published in 2017 - IPC G01C19/66 

Abstract RU 2630533 C1

FIELD: physics.

SUBSTANCE: method of compensating for the thermal bending and deformation of optical channels of a polygonal laser gyroscope monoblock is based on the installation of an optically transparent monoblock, the operating mode of which is achieved using a micro-power semiconductor laser diode equipped with, at least, one Peltier element for the thermostabilisation of the radiation regime of a laser diode located inside the optical circuit, formed by a set of optical laser gyroscope channels, on a metal base with functions on cooling radiator. At the same time, at the base of the monoblock, special grooves of a given depth and geometry are created, but not interlocked with the optical channels, which, prior to mounting, are filled with heat-conducting paste to the level of contact with the metal base and provide a zone equalization of the temperature gradient in the working zones from the source of local heating - the Peltier element. The thermal conductivity of the paste should be several times higher than that of the metal base, which compensates for the thermal imbalance of the working zones of the optical channels in the amount equal to the number of created slots.

EFFECT: compensation of thermal bending and deformation of optical channels of a polygonal laser gyroscope monoblock and ensuring its operability at high and low ambient temperatures.

3 dwg

Similar patents RU2630533C1

Title Year Author Number
METHOD OF COMPENSATING FOR THERMAL BENDING AND DEFORMATION OF LASER GYROSCOPE MONOBLOCK OPTICAL CHANNELS 2016
  • Us Nikolaj Aleksandrovich
  • Zadorozhnij Sergej Pavlovich
  • Avershin Aleksandr Aleksandrovich
  • Sklyarova Oksana Nikolaevna
RU2630531C1
LASER GYROSCOPE 2014
  • Arkhipov Vladimir Alekseevich
  • Polutov Andrej Gennadevich
  • Us Nikolaj Aleksandrovich
  • Skljarova Oksana Nikolaevna
  • Zadorozhnij Sergej Pavlovich
  • Smirnov Petr Vasilevich
RU2582900C1
LASER GYROSCOPE 2017
  • Us Nikolaj Aleksandrovich
  • Zadorozhnij Sergej Pavlovich
  • Avershin Aleksandr Aleksandrovich
  • Sklyarova Oksana Nikolaevna
RU2655626C1
MEASUREMENT UNIT OF ANGULAR VELOCITIES WITH REVERSIBLE THERMAL CONTROL SYSTEM 2018
  • Pankratov Vladimir Mikhajlovich
  • Golikov Aleksej Viktorovich
  • Efremov Maksim Vladimirovich
  • Levushkin Denis Vladimirovich
  • Romanov Anton Viktorovich
RU2675779C1
METHOD FOR INCREASING Q-FACTOR OF AN OPTICAL CIRCUIT OF AN ANNULAR MONOBLOCK LASER GYROSCOPE 2018
  • Us Nikolaj Aleksandrovich
  • Zadorozhnij Sergej Pavlovich
  • Avershin Aleksandr Aleksandrovich
  • Sklyarova Oksana Nikolaevna
RU2709014C1
UNIVERSAL RADIATOR OF SOLID-STATE LASER 2015
  • Yarulina Natalya Borisovna
  • Abyshev Anatolij Aleksandrovich
  • Byzov Roman Andreevich
  • Sokolovskij Mikhail Leonidovich
  • Berezin Andrej Vladimirovich
  • Orekhov Georgij Viktorovich
  • Korepanov Nikolaj Valerevich
RU2592057C1
LASER GYROSCOPE 2016
  • Us Nikolaj Aleksandrovich
  • Zadorozhnij Sergej Pavlovich
  • Avershin Aleksandr Aleksandrovich
  • Sklyarova Oksana Nikolaevna
RU2627566C1
LASER GYROSCOPE 2021
  • Us Nikolaj Aleksandrovich
  • Zadorozhnij Sergej Pavlovich
  • Avershin Aleksandr Aleksandrovich
  • Sklyarova Oksana Nikolaevna
RU2785441C1
THERMAL STABILIZATION SYSTEM OF THE RADIATION DETECTOR 2023
  • Shepelev Danila Nikolaevich
  • Syskov Dmitrii Viktorovich
  • Stavrietskii Georgii Valentinovich
  • Klevtsov Anton Pavlovich
  • Nikitin Denis Olegovich
  • Evert Viacheslav Iurevich
RU2799105C1
LASER GYROSCOPE 2011
  • Us Nikolaj Aleksandrovich
RU2507482C2

RU 2 630 533 C1

Authors

Us Nikolaj Aleksandrovich

Zadorozhnij Sergej Pavlovich

Avershin Aleksandr Aleksandrovich

Sklyarova Oksana Nikolaevna

Dates

2017-09-11Published

2016-04-06Filed