Способ формирования радиолокационного изображения в радиолокационной станции с синтезированной апертурой антенны Российский патент 2017 года по МПК G01S13/89 

Описание патента на изобретение RU2632898C1

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной (водной) поверхности.

Известен способ формирования радиолокационного изображения (аналог), состоящий в зондировании, приеме, запоминании эхо-сигнала, выборке запомненного сигнала с длительностью, равной периоду зондирования, сжатии каждой выборки по дальности и азимуту [1. Антипов В.Н., Колтышев Е.Е., Мухин В.В., Печенников А.В., Фролов А.Ю., Янковский В.Т. Радиолокационная система беспилотного летательного аппарата. Радиотехника №7, 2006].

Недостатком способа является то, что в нем не предусмотрена синхронизация момента начала записи с началом очередного зондирования. В результате на этапе сжатия по дальности каждая выборка запомненного сигнала включает информацию не только текущего периода зондирования, но и части соседнего. Это обусловливает ухудшение разрешения РЛИ по наклонной дальности и уменьшение его динамического диапазона.

Наиболее близким к предлагаемому изобретению (прототип) является способ формирования радиолокационного изображения, основанный на реализации алгоритма синтезирования апертуры антенны в РЛС непрерывного излучения сигнала с линейной частотной модуляцией [2. Michael I. Duersch A very small, low-power LFM-CW synthetic aperture radar. - Brigham Young University, 2004].

Способ формирования радиолокационного изображения включает: зондирование, прием, запоминание и разделение в пределах скользящего во времени окна длительностью, равной периоду зондирования, принятого эхо-сигнала на две равные части; вычисление их спектров с последующим нахождением взаимного корреляционного интеграла; определение положения его максимума, по которому принимается решение о начале зондирования; формирование двумерной матрицы путем построчного с момента начала зондирования запоминания принятых эхо-сигналов длительностью, равной периоду зондирования, и последующим сжатием матрицы по дальности и азимуту.

Определение момента начала зондирования в способе-прототипе основывается на применении сигналов с симметричной линейной частотной модуляцией зондирующего сигнала [3. Финкельштейн М.И. Основы радиолокации. 2-е изд. – М.: «Радио и связь», 2083. С. 111-112]. В этом случае демодулированные сигналы на выходе приемного устройства, соответствующие участкам нарастания и уменьшения частоты зондирующего сигнала, отличаются знаком начальной фазы. Максимум корреляции достигается лишь в том случае, когда в пределах скользящего окна оказываются отсчеты эхо-сигнала одного и того же периода зондирования (с нарастанием либо уменьшением частоты). Однако такой подход сопровождается ошибками, особенно при получении изображений однородной поверхности. Кроме того, его применение не позволяет определить время начала зондирования при использовании зондирующих сигналов с несимметричной ЛЧМ, когда частота сигнала в каждом отдельном периоде зондирования или только нарастает, или только убывает.

В результате неправильное определение момента начала зондирования приводит к тому, что при формировании РЛИ используется информация не только текущего периода зондирования, но и части соседнего. Это обусловливает ухудшение разрешения РЛИ по наклонной дальности и уменьшение его динамического диапазона вследствие возрастания уровня зеркального изображения, т.е. изображения, являющегося результатом обработки эхо-сигнала на участке с противоположным относительно текущего периода знаком фазы.

Технической задачей является повышение разрешения РЛИ по наклонной дальности и расширение его динамического диапазона.

Технический результат достигается тем, что в известном способе формирования радиолокационного изображения, состоящем в зондировании, приеме, запоминании эхо-сигналов, определении момента начала зондирования, построении двумерной матрицы путем построчного с момента начала зондирования считывания отсчетов запомненного эхо-сигнала, сжатии двумерной матрицы по дальности и азимуту, отличающемся тем, что дополнительно во время запоминания принятого эхо-сигнала в моменты начала зондирования осуществляют вставку пауз длительностью τи путем его амплитудной манипуляции, а во время определения момента начала зондирования осуществляют интегрирование абсолютного значения запомненного сигнала в пределах скользящего окна, представляющего собой временной строб с длительностью τи и изменяющимся временным смещением от нулевого значения (t=0), соответствующего началу запоминания эхо-сигнала, до значения, равного периоду зондирования (t=Т), определяют временное положение минимума полученного интеграла, который соответствует моменту начала зондирования. В отличие от прототипа в изобретении возможно определение по паузам в запоминаемом эхо-сигнале момента начала зондирования независимо от структуры зондирующего сигнала и характера зондируемой поверхности.

Сущность изобретения заключается в том, что во время запоминания эхо-сигналов в моменты начала зондирования t0 в него осуществляют вставку пауз длительностью τи. Длительность пауз определяют исходя из того, что уменьшение длительности паузы, с одной стороны, приводит к увеличению вероятности ее пропуска, а с другой стороны, увеличение τи снижает разрешение РЛИ по наклонной дальности. Интервал длительностей паузы определен на основе проведенного статистического моделирования и составляет 0,1-5% периода зондирования. В этом случае обеспечивается высокая вероятность определения t0 при несущественном ухудшении разрешения РЛИ по наклонной дальности.

Во время определения момента начала зондирования осуществляют поиск временного положения пауз в запомненном эхо-сигнале x(t), которое в дальнейшем является моментом начала формирования первой строки двумерной матрицы. Определение временного положения пауз основывается на оценке характера изменения среднего уровня сигнала путем его интегрирования в пределах скользящего окна, т.е. временного строба с длительностью τи и изменяющимся временным смещением t от нулевого значения (t=0), соответствующего началу запоминания эхо-сигнала, до значения, равного периоду зондирования (t=Т). Однако, учитывая, что запомненный с выхода приемного устройства эхо-сигнал является шумоподобным и имеет нулевую постоянную составляющую, то осуществляется нахождение его абсолютного значения. В этом случае сигнал во время отсутствия паузы приобретает некоторую постоянную составляющую. Тогда сигнал на выходе интегратора будет минимален в момент времени, когда положение скользящего окна соответствует положению паузы. Определив положение минимума этого сигнала в пределах одного периода зондирования, принимают решение о моменте начала зондирования t0, то есть

,

где , t ∈ [0,T].

Длительность каждой из строк двумерной матрицы задается равной периоду зондирования. Начало формирования второй и последующих строк для обеспечения когерентности обработки при азимутальном сжатии матрицы осуществляется сразу же после формирования предыдущей строки.

Способ может быть реализован с помощью известных радиотехнических элементов, выпускаемых промышленностью.

На фиг. 1 представлена структурная схема варианта реализации заявляемого способа и применяемых для этого устройств, где введены следующие обозначения: 1 - передающее устройство, 2 - приемное устройство, 3 - аналого-цифровой преобразователь, 4 - запоминающее устройство, 5 - устройство построчного формирования двумерной матрицы, 6 - устройство сжатия по дальности, 7 - устройство сжатия по азимуту, 8 - устройство отображения РЛИ, 9 - устройство управления, 10 - устройство выборки отсчетов, 11 - устройство определения модуля сигнала, 12 - интегратор, 13 - устройство определения положения минимума, 14 - устройство размыкания, 15 - устройство расширения импульсов.

Передающее устройство 1 предназначено для формирования, усиления и излучения широкополосного ЛЧМ зондирующего сигнала, а также для формирования синхроимпульсов, определяющих начало зондирования. Может быть выполнено как в прототипе [2. Michael I. Duersch A very small, low-power LFM-CW synthetic aperture radar. - Brigham Young University, 2004].

Приемное устройство 2 предназначено для приема, усиления и демодуляции эхо-сигналов и может быть выполнено как в прототипе [2. Michael I. Duersch A very small, low-power LFM-CW synthetic aperture radar. - Brigham Young University, 2004].

Аналого-цифровой преобразователь 3 предназначен для оцифровки аналогового эхо-сигнала в дискретные отсчеты (числовой код) и может быть реализован на АЦП типа ADC [4. http://www.linear.com/parametric/Analog-to-Digital_Converters_(ADC)].

Запоминающее устройство 4 предназначено для приема, хранения отсчетов оцифрованного эхо-сигнала с последующей их выдачей устройству выборки отсчетов и устройству построчного формирования двумерной матрицы. Может быть выполнено на микросхемах [5. Лаврентьев Б.Ф. Схемотехника электронных средств / Б.Ф. Лаврентьев. - М.: Издательский центр «Академия», 210. - 336 с., С. 222-226].

Устройство построчного формирования двумерной матрицы 5 осуществляет построчное считывание, содержимого запоминающего устройства и формирование двумерной матрицы. При этом количество отсчетов в каждой строке матрицы соответствует количеству отсчетов за время одного периода зондирования, количество строк определяется исходя из длительности записи РЛИ, а начало формирования каждой последующей строки осуществляется сразу же после завершения текущей.

Устройство сжатия по дальности 6 выполняет построчное вычисление одномерного преобразования Фурье.

Устройство сжатия по азимуту 7 предназначено для перемножения каждого из столбцов двумерной матрицы на соответствующую опорную функцию, которая задается отдельно для каждого элемента разрешения на РЛИ, с последующим нахождением для каждого из столбцов одномерного преобразования Фурье.

Назначение устройства отображения РЛИ 8 понятно из названия. Оно может быть реализовано, например, на основе персональной ЭВМ или другого средства отображения графической информации.

Устройство управления 9 на основе информации, задаваемой оператором, задает режимы работы устройства формирования радиолокационного изображения. Так, на этапе излучения, приема и запоминания эхо-сигналов устройство управления формирует сигнал разрешения записи отсчетов оцифрованного эхо-сигнала в запоминающее устройство, а на этапе определения момента начала зондирования, формирования двумерной матрицы с последующим формированием РЛИ - сигнала запуска устройства выборки отсчетов. Устройство может быть выполнено на основе микроконтроллера [6. http://www.atmel.com/products/microcontrollers/avr/default.aspx].

Устройство выборки отсчетов 10 предназначено для формирования сигналов считывания отсчетов эхо-сигнала из запоминающего устройства и создания на их основе набора выборок, длина каждой из которых соответствует длительности паузы τи, а их количество соответствует количеству отсчетов эхо-сигнала, запоминаемых в течение одного периода зондирования. При этом начало каждой последующей выборки смещается относительно начала предыдущей на один отсчет.

Устройство определения модуля сигнала 11 предназначено для нахождения абсолютных значений отсчетов оцифрованных эхо-сигналов, поступающих на его вход.

Интегратор 12 выдает результат суммирования всех значений элементов одномерного массива заданной длины, поступающего на его вход.

Устройство определения положения минимума 13 осуществляет выдачу индекса наименьшего элемента входного массива.

Устройство построчного формирования двумерной матрицы 5, устройство сжатия по дальности 6, устройство сжатия по азимуту 7, устройство выборки отсчетов 10, устройство определения модуля сигнала 11, интегратор 12, устройство определения положения минимума 13 могут быть выполнены на цифровом сигнальном процессоре [7. http://www.analog.com/en/products/processors-dsp/blackfin.html].

Устройство размыкания 14 предназначено для отключения выхода приемного устройства от входа аналого-цифрового преобразователя на время, определяемое длительностью импульса, подаваемого на его второй вход. Устройство может быть выполнено на основе аналогового ключа или коммутатора [8. Зубчук В.И. и др. Справочник по цифровой схемотехнике / В.И. Зубчук, В.П. Сигорский, А.Н. Шкуро. - К.: Тэхника, 1990. - 448 с., С. 295].

Устройство расширения импульсов 15 предназначено для формирования прямоугольных импульсов определенной длительности и может быть выполнено на основе, например, одновибратора [5. Лаврентьев Б.Ф. Схемотехника электронных средств / Б.Ф. Лаврентьев. - М.: Издательский центр «Академия», 210. - 336 с., С. 169-170].

Работа устройства состоит из двух этапов: этапа излучения, приема и запоминания эхо-сигналов и этапа определения момента начала зондирования, формирования двумерной матрицы с последующим формированием РЛИ. Текущий этап работы и его параметры определяют устройством управления 9 на основе информации, задаваемой оператором.

На первом этапе на основе информации, задаваемой оператором (время начала записи и длительность записи РЛИ), устройство управления 9 формирует сигнал, разрешающий запись в запоминающее устройство 4. Излученный передающим устройством 1 и принятый приемным устройством 2 сигнал оцифровывают с помощью аналого-цифрового преобразователя 3 и записывают в запоминающее устройство 4. При этом с помощью устройства размыкания 14 в моменты начала зондирования, задаваемые синхроимпульсами с выхода передающего устройства 1, осуществляют вставку в запоминаемый сигнал пауз длительностью τи путем отключения выхода приемного устройства 2 от входа аналого-цифрового преобразователя 3 на время, определяемое устройством расширения импульсов 15.

На втором этапе устройство управления 9 осуществляет запуск устройства выборки отсчетов 10, которое производит считывание отсчетов эхо-сигнала из запоминающего устройства 4 и формирование на их основе набора выборок, длина каждой из которых соответствует длительности паузы τи, а их количество соответствует количеству отсчетов эхо-сигнала, запоминаемых в течение одного периода зондирования. Начало каждой последующей выборки смещено относительно начала предыдущей на один отсчет. Далее в устройстве определения модуля сигнала 11 вычисляют абсолютные значения отсчетов каждой выборки. После этого в интеграторе 12 производят суммирование абсолютных значений отсчетов каждой выборки с последующим нахождением в устройстве определения положения минимума 13 номера начального отсчета N0 выборки с минимальным результатом суммирования, который соответствует моменту начала зондирования t0.

Начиная со смещения N0 относительно начала записи устройство построчного формирования двумерной матрицы 5 осуществляет построчное считывание отсчетов из запоминающего устройства 4 и формирование двумерной матрицы. При этом количество отсчетов в каждой строке матрицы соответствует количеству отсчетов за время одного периода зондирования, количество строк определяется исходя из длительности записи РЛИ, а начало формирования каждой последующей строки осуществляется сразу же после завершения текущей. По окончании формирования двумерной матрицы производят ее сжатие по дальности и азимуту в устройствах 6 и 7 соответственно и передачу в устройство отображения РЛИ 8.

Для пояснения физической сущности проводимых операций в заявляемом способе на фиг. 2 приведены временные диаграммы сигналов. На этих диаграммах буквами «а...ж» обозначены сигналы ua(t), uб(t), uв(t), x(t), uд(t), y(t), uж(t) на выходах соответствующих устройств:

а) приемного устройства 2;

б) передающего устройства 1 (синхроимпульсы, определяющие момент начала зондирования);

в) расширения импульсов 15;

г) устройства размыкания 14;

д) устройства определения модуля сигнала 11;

е) интегратора 12;

ж) устройства определения положения минимума 13.

Похожие патенты RU2632898C1

название год авторы номер документа
Устройство формирования радиолокационного изображения в радиолокационной станции с синтезированной апертурой антенны 2016
  • Купряшкин Иван Федорович
  • Лихачев Владимир Павлович
  • Рязанцев Леонид Борисович
  • Яковенков Валентин Валентинович
RU2619771C1
Способ формирования радиолокационного изображения земной поверхности бортовой радиолокационной станцией 2023
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
RU2806651C1
Способ формирования радиолокационного изображения земной поверхности бортовой радиолокационной станцией 2019
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
  • Лавренюк Дмитрий Сергеевич
RU2717256C1
СПОСОБ ФОРМИРОВАНИЯ ДЕТАЛЬНЫХ РАДИОЛОКАЦИОННЫХ ИЗОБРАЖЕНИЙ В РЛС С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ 2018
  • Дробот Игорь Сергеевич
  • Рязанцев Леонид Борисович
  • Купряшкин Иван Федорович
  • Лихачев Владимир Павлович
  • Коков Ренат Русланович
  • Гареев Марат Шамилевич
RU2710961C1
СПОСОБ ФОРМИРОВАНИЯ РАДИОЛОКАЦИОННЫХ ИЗОБРАЖЕНИЙ В РЛС С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ 2022
  • Буслаев Алексей Борисович
  • Мариам Мохаммад Хасан
  • Муравьев Никита Павлович
  • Непомнящий Максим Михайлович
  • Рязанцев Леонид Борисович
RU2801361C1
СПОСОБ ФОРМИРОВАНИЯ РАДИОЛОКАЦИОННЫХ ИЗОБРАЖЕНИЙ В РЛС С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ С ПРЕДВАРИТЕЛЬНОЙ ФОКУСИРОВКОЙ И УСТРОЙСТВО ЕГО РЕАЛИЗУЮЩЕЕ 2021
  • Буслаев Алексей Борисович
  • Гуляев Григорий Анатольевич
  • Иванников Кирилл Сергеевич
  • Иванникова Мария Владимировна
  • Муравьев Никита Павлович
  • Рязанцев Леонид Борисович
RU2792964C2
СПОСОБ ОПРЕДЕЛЕНИЯ КООРДИНАТ ЛЕТАТЕЛЬНОГО АППАРАТА ПО РАДИОЛОКАЦИОННОМУ ИЗОБРАЖЕНИЮ 2017
  • Рязанцев Леонид Борисович
  • Лихачев Владимир Павлович
  • Купряшкин Иван Федорович
  • Беляев Виктор Вячеславович
  • Сидоренко Сергей Викторович
RU2656366C1
Способ искажения радиолокационного изображения в космической радиолокационной станции с синтезированной апертурой антенны 2016
  • Купряшкин Иван Федорович
  • Лихачев Владимир Павлович
  • Селезнев Денис Анатольевич
  • Усов Николай Александрович
RU2622904C1
СПОСОБ ИМИТАЦИИ РАДИОЛОКАЦИОННЫХ ЦЕЛЕЙ 2014
  • Купряшкин Иван Федорович
  • Усов Николай Александрович
RU2562614C1
СПОСОБ ПОСТРОЕНИЯ ДВУМЕРНОГО РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ВОЗДУШНОЙ ЦЕЛИ ПО ТРАЕКТОРНЫМ НЕСТАБИЛЬНОСТЯМ ЕЕ ПОЛЕТА 2000
  • Митрофанов Д.Г.
  • Гусев М.П.
  • Денисов А.В.
  • Гузаев Д.Н.
  • Бортовик В.В.
RU2180445C2

Иллюстрации к изобретению RU 2 632 898 C1

Реферат патента 2017 года Способ формирования радиолокационного изображения в радиолокационной станции с синтезированной апертурой антенны

Изобретение относится к радиолокации и может использоваться в радиотехнических системах, установленных на подвижных объектах, для получения радиолокационного изображения (РЛИ) в процессе дистанционного зондирования земной (водной) поверхности. Достигаемый технический результат - повышение разрешения радиолокационного изображения по наклонной дальности и расширение динамического диапазона за счет синхронизации момента начала записи эхо-сигнала с началом очередного зондирования. Указанный результат достигается за счет того, что способ формирования радиолокационного изображения в радиолокационной станции с синтезированной апертурой антенны состоит в зондировании, приеме, запоминании эхо-сигналов, определении момента начала зондирования, построении двумерной матрицы путем построчного с момента начала зондирования считывания отсчетов запомненного эхо-сигнала, сжатии двумерной матрицы по дальности и азимуту, при этом во время запоминания принятого эхо-сигнала в моменты начала зондирования осуществляют вставку пауз длительностью τи путем его амплитудной манипуляции, а во время определения момента начала зондирования осуществляют интегрирование абсолютного значения запомненного сигнала в пределах скользящего окна, представляющего собой временной строб с длительностью τи и изменяющимся временным смещением от нулевого значения, соответствующего началу запоминания эхо-сигнала, до значения, равного периоду зондирования, определяют временное положение минимума полученного интеграла, который соответствует моменту начала зондирования. 2 ил.

Формула изобретения RU 2 632 898 C1

Способ формирования радиолокационного изображения в радиолокационной станции с синтезированной апертурой антенны, состоящий в зондировании, приеме, запоминании эхо-сигналов, определении момента начала зондирования, построении двумерной матрицы путем построчного с момента начала зондирования считывания отсчетов запомненного эхо-сигнала, сжатии двумерной матрицы по дальности и азимуту, отличающийся тем, что дополнительно во время запоминания принятого эхо-сигнала в моменты начала зондирования осуществляют вставку пауз длительностью τи путем его амплитудной манипуляции, а во время определения момента начала зондирования осуществляют интегрирование абсолютного значения запомненного сигнала в пределах скользящего окна, представляющего собой временной строб с длительностью τи и изменяющимся временным смещением от нулевого значения, соответствующего началу запоминания эхо-сигнала, до значения, равного периоду зондирования, определяют временное положение минимума полученного интеграла, который соответствует моменту начала зондирования.

Документы, цитированные в отчете о поиске Патент 2017 года RU2632898C1

СПОСОБ ФОРМИРОВАНИЯ РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ОБЪЕКТОВ 2007
  • Купряшкин Иван Федорович
  • Лихачев Владимир Павлович
  • Усов Николай Александрович
RU2347237C1
СПОСОБ ФОРМИРОВАНИЯ РАДИОЛОКАЦИОННОГО ИЗОБРАЖЕНИЯ ПОВЕРХНОСТИ БОРТОВОЙ РЛС, УСТАНОВЛЕННОЙ НА ДВИЖУЩЕМСЯ ЛЕТАТЕЛЬНОМ АППАРАТЕ 2013
  • Колтышев Евгений Евгеньевич
  • Кондратенков Геннадий Степанович
  • Таганцев Владимир Анатольевич
  • Чезганов Николай Федорович
  • Фролов Алексей Юрьевич
RU2528169C1
СПОСОБ КАРТОГРАФИРОВАНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СТАНЦИЕЙ 2014
  • Ефремов Анатолий Васильевич
  • Таганцев Владимир Анатольевич
RU2559203C1
US 6781541 B1, 24.08.2004
JP 2010008272 A, 14.01.2010
US 7196653 B2, 27.03.2007
US 8362946 B2, 29.01.2013.

RU 2 632 898 C1

Авторы

Купряшкин Иван Федорович

Лихачев Владимир Павлович

Рязанцев Леонид Борисович

Яковенков Валентин Валентинович

Даты

2017-10-11Публикация

2016-02-08Подача