Изобретение относится к области переработки жидких радиоактивных промышленных отходов, в частности матричной иммобилизации, и может быть использовано на предприятиях, перерабатывающих минеральное и техногенное сырье, содержащее редкоземельные элементы (РЗЭ).
В процессе извлечения из минерального и техногенного сырья и концентрации РЗЭ получают жидкие отходы с преобладающим содержанием природного радионуклида тория и продуктов его распада, отличающиеся от радиоактивных отходов атомной отрасли России и другого минерального сырья, содержащего радионуклиды. По данным [Андреева О.С., Кислев В.И., Малинина В.И. Редкоземельные элементы. Радиационно-гигиенические аспекты. – М.: Атомиздат, 1975. – 152 c.] удельная активность самих РЗЭ-содержащих минералов с учётом распадов в трёх радиоактивных рядах по α-излучению варьируется в интервале 10-8-10-7 Ки/г и в примерно таких же интервалах по β-излучению.
Для иммобилизации и изолирования радиоактивных отходов (РАО) применяют несколько способов [Сваровский А.Я., Стриханов М.Н., Жиганов А.Н. Технология и оборудование обезвреживания жидких радиоактивных отходов. – Москва, 2012 г. – 499 с .]:
- цементирование и битумирование радиоактивных отходов с низкой и средней удельной активностью;
- высокотемпературный обжиг для получения спеченных частиц;
- остекловывание с применением боросиликатных или фосфатных стекол, упаковка в контейнеры из нержавеющей стали и свинца.
Включение РАО в керамические матрицы может быть реализовано по двум вариантам:
1) посредством пропитки раствором РАО заранее полученной пористой керамической матрицы с её последующим обжигом;
2) путём смешения РАО с компонентами, из которых формируется керамическая матрица с «включёнными» в неё РАО.
Известен способ матричной иммобилизации промышленных отходов радиохимических и химико-металлургических производств [RU №2281573, G21F 9/16, G21F 9/04, опуб. 10.08.2006]. Способ включает предварительную обработку исходного раствора промышленных отходов и пропитку им керамической матрицы с её последующим обжигом, исходные жидкие РАО обрабатывают раствором промотора кристаллизации и оксидообразующими добавками, после чего РАО вводят в керамическую матрицу и обжигают с применением СВЧ-энергии при температуре 900-1000°С.
В качестве недостатков этого способа можно отметить длительность пропитки матрицы раствором РАО ( в примере 2: блок керамики объёмом 1 литр пропитывается 24 часа), что затрудняет использование матриц больших объёмов (1 м3 и более); существуют сомнения в возможности многократного обжига больших матриц с применением СВЧ-энергии до температуры 1000°С.
Наиболее близким по технической сущности и достигаемому результату к заявленному техническому решению является способ включения жидких радиоактивных отходов, содержащих нитрат натрия, в керамическую матрицу [RU №2086019, G21F 9/16, опуб. 27.07.1997], выбранный в качестве прототипа.
Способ включает смешивание жидких радиоактивных отходов с керамообразующим материалом, обезвоживание полученной смеси, её обжиг и последующее охлаждение, при этом в смесь жидких радиоактивных отходов с керамообразующим материалом дополнительно вводят карбамид в соотношении с нитратом натрия не ниже 80 % от стехиометрического и кремнефторидаммония, обезвоживание осуществляют до остаточной влажности не более 10 мас.% при температуре не выше 100°С, после чего смесь нагревают от 100°С до не более 180°С в течение 6-8 ч, затем температуру поднимают до 900°С в течение не менее 4 ч, а обжиг осуществляют при 900°С в течение не менее 1 ч. В качестве керамообразующего материала используют бентонит с нитратом натрия или смесь трепела и гидроокиси алюминия или суглинок с нитратом натрия.
Недостатком данного способа является многостадийность нагрева и обжига получаемой смеси радиоактивных отходов с керамообразующим материалом, что делает его нетехнологичным.
Задача, на решение которой направлено изобретение, заключается в упрощении технологического процесса синтеза минералоподобной матрицы при одновременной иммобилизации в ней радиоактивных отходов, пригодной для долговременного хранения, простоте аппаратурного оформления.
Поставленная задача достигается тем, что способ синтеза минералоподобных матриц для изоляции радиоактивных веществ включает смешивание жидких радиоактивных отходов с керамообразующим материалом и застывание получающейся смеси, при этом керамообразующим материалом является смесь из дигидрофосфата калия (32-42) мас.%, технического оксида магния (магнезита) (13-20) мас.%, отожжённого при температуре (500-550)°С и воды (20-30) мас.%. Исходные вещества перемешивают мешалкой до схватывания получившейся суспензии в минералоподобную матрицу.
При заполнении матриц растворами необходимо учитывать, что вследствие радиоактивного распада образуются новые химические элементы, дающие соединения с иной кристаллической решеткой и пористостью, чем материал матрицы. Минералоподобные матрицы имеют в данном аспекте преимущество перед другими матрицами: соединения, размещенные в пористой матрице занимают не весь объем пористого пространства, поэтому имеется определенная степень свободы при изменении плотности и структуры кристаллической решетки и подобные трансформации не влекут за собой деструктивных процессов [Скачек М.А. Радиоактивные компоненты АЭС: обращение, переработка, локализация. – Москва: Изд-во МЭИ, 2014. – 552 с.].
Магний-калий-фосфатная (МКФ) матрица формируется на основе дигидрофосфата калия (MgKPO4·6Н2О) и представляет собой кристаллический гексагидрат двойного ортофосфата магния и калия, который является аналогом природных фосфатных минералов - монацита и апатита, обладающих высокой физико-химической стабильностью в геологической среде, а содержание в них природных урана и тория может достигать десятков мас.%.
Минералоподобные матрицы МКФ для иммобилизации РАО обладают физико-химическими свойствами, которые превосходят по всем параметрам используемые в настоящее время низкотемпературные цементы:
- высокая химическая устойчивость полученных матриц к выщелачиванию радионуклидов и других компонентов при различных температурах и условиях;
- высокая механическая прочность при внешних воздействиях и радиационная устойчивость матриц.
Процесс синтеза матрицы МКФ осуществляют в следующем порядке.
Первоначально производят отжиг технического оксида магния (марки «магнезит» или ПМК-83 по ГОСТ 1216) для удаления части примесей при температуре (500-550) 0С. После охлаждения оксида магния его помещают в емкость-смеситель, затем добавляют дигидрофосфат калия (32-42) мас. %. В емкость-смеситель добавляют воду (20-30) мас.%. и РАО в количестве 20 % от смеси керамообразующих материалов. Исходные вещества перемешивают мешалкой до схватывания получившейся суспензии. Соединение образуется при обычных условиях (атмосферное давление, комнатная температура) в результате химической реакции между техническим оксидом магния и дигидрофосфатом калия в воде.
По окончании процесса мешалка извлекается из ёмкости-смесителя, последнюю герметизируют с помощью специальной крышки и направляют на захоронение
Эксперименты показали, что предварительная прокалка оксида магния позволяет синтезировать матрицы МКФ, более устойчивые к выщелачиванию радиоактивных примесей, за счёт меньшего поглощения воды – 16,55 % (для оксида магния без прокалки – 20,26 %), а также имеет меньшую пористость – 10,0 % (для оксида магния без прокалки – 12,35 %).
Использование матрицы МКФ для окончательной изоляции РАО упрощает технологический процесс, обеспечивает длительное экологически безопасное и экономически выгодное хранение и/или захоронение таких отходов при простоте аппаратурного оформления способа.
название | год | авторы | номер документа |
---|---|---|---|
Наномодифицированный магнезиальный цемент | 2019 |
|
RU2720463C1 |
Способ иммобилизации жидких высокосолевых радиоактивных отходов | 2017 |
|
RU2645737C1 |
СПОСОБ ПЕРЕРАБОТКИ РАДИОАКТИВНЫХ ДОННЫХ ОТЛОЖЕНИЙ | 2015 |
|
RU2605607C1 |
СПОСОБ СТАБИЛИЗАЦИИ ЖИДКИХ ВЫСОКОСОЛЕВЫХ ВЫСОКОАКТИВНЫХ ОТХОДОВ | 2008 |
|
RU2381580C1 |
СПОСОБ КОНДИЦИОНИРОВАНИЯ ДОННЫХ ОТЛОЖЕНИЙ СОДЕРЖАЩИХ РАДИОНУКЛИДЫ | 2014 |
|
RU2572080C1 |
СПОСОБ ИММОБИЛИЗАЦИИ ВЫСОКОАКТИВНЫХ ОТХОДОВ - ФРАКЦИИ ТРАНСПЛУТОНИЕВЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ (ВАРИАНТЫ) | 2001 |
|
RU2210824C2 |
СПОСОБ ИММОБИЛИЗАЦИИ РАДИОАКТИВНЫХ ОТХОДОВ В МИНЕРАЛОПОДОБНОЙ МАТРИЦЕ | 2010 |
|
RU2439726C1 |
СПОСОБ ПОЛУЧЕНИЯ МИНЕРАЛОПОДОБНОЙ МАТРИЦЫ ДЛЯ ИММОБИЛИЗАЦИИ ВЫСОКОАКТИВНЫХ ОТХОДОВ | 2021 |
|
RU2790580C2 |
МОНОЛИТНЫЙ БЛОК ДЛЯ ИММОБИЛИЗАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ | 1999 |
|
RU2160937C1 |
СПОСОБ ИММОБИЛИЗАЦИИ ЖИДКИХ РАО В КЕРАМИКУ | 2010 |
|
RU2432631C1 |
Изобретение относится к области переработки жидких радиоактивных промышленных отходов, в частности матричной иммобилизации. Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ включает смешивание жидких радиоактивных отходов с керамообразующим материалов и застывание получающейся смеси. Керамообразующим материалом является смесь из дигидрофосфата калия (32-42) мас. %, магнезита (технического оксида магния), отожжённого при температуре (500-550)°С (13-20) мас.%, и воды (20-30) мас.%. Изобретение позволяет упростить технологический процесс синтеза минералоподобной матрицы при одновременной иммобилизации в ней радиоактивных отходов. 1 з.п. ф-лы.
1. Способ синтеза минералоподобных матриц для изоляции радиоактивных веществ, включающий смешивание жидких радиоактивных отходов с керамообразующим материалов и застывание получающейся смеси, отличающийся тем, что керамообразующим материалом является смесь из дигидрофосфата калия (32-42) мас.%, магнезита (технического оксида магния), отожжённого при температуре (500-550)°С (13-20) мас.%, и воды (20-30) мас.%.
2. Способ по п.1, отличающийся тем, что исходные вещества перемешивают мешалкой до схватывания получившейся суспензии.
СПОСОБ ВКЛЮЧЕНИЯ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ, СОДЕРЖАЩИХ НИТРАТ НАТРИЯ, В КЕРАМИЧЕСКУЮ МАТРИЦУ | 1995 |
|
RU2086019C1 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ИММОБИЛИЗАЦИИ РАДИОАКТИВНЫХ И ХИМИЧЕСКИХ ТОКСИЧНЫХ ОТХОДОВ (ВАРИАНТЫ) | 2008 |
|
RU2378723C2 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ИММОБИЛИЗАЦИИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ И СПОСОБ ЕГО ПРИМЕНЕНИЯ | 2011 |
|
RU2483375C2 |
US 6399848 B1, 04.06.2002 | |||
US 3943062 A1, 09.03.1976. |
Авторы
Даты
2017-10-19—Публикация
2016-08-04—Подача