Изобретение относится к области радиохимической технологии и может быть использовано для иммобилизации неразделенных радиоактивных отходов (РАО), содержащих как актиноидные элементы (U, Pu, Np, Am, Cm), так и другие радионуклиды (Cs, Sr, Тс и др.).
В известных способах иммобилизации высокоактивных РАО в качестве консервирующих матриц используют:
1. Фосфатное и боросиликатное стекло (Ровный С.И., Скобцов А.С. Технологический процесс остекловывания жидких РАО высокого уровня радиоактивности на заводе РТ-1// Обзор договоров с ЛЛНЛ по обращению с избыточным оружейным плутонием в России. Труды 3-й ежегодной встречи по координации и обзору российских работ в рамках договоров с ЛЛНЛ. 14-18 января 2002 г., СПб., Россия. 2002.UCRL-ID-149341. С. 91-95).
2. Кристаллические керамики различного фазового состава (Ringwood A.E., Oversby V.M., Kesson S.E. et al. Immobilization of high-level nuclear reactor wastes in SYNROC: A current appraisal// Nuclear and Chemical Waste Management. 1981. v.2, p.287-305).
3. Комбинированные стеклокерамические материалы (Vance E.R., Jostson A., Day R.A. et al. Excess Pu disposition in zirconolite-rich Synroc// Proc. of sympos. «Sci. Basis for Nucl. Waste Management XIX». Pittsburgh, PA: MRS, 1996, v.412, p.41-47)
Недостатками стекломатриц являются применение высоких температур (1300-1500°С для боросиликатного стекла), низкая растворимость и неравномерное вхождение в стекло различных радионуклидов, высокая выщелачиваемость (≥10-1г/м2/сутки); низкая устойчивость к альфа-самооблучению. Кроме того, остекловывание неконцентрированных РАО неэкономично.
Синтез керамических матриц осуществляют либо плавлением, либо высокотемпературным спеканием (более 1200°С) спрессованного материала. Матрицами чаще всего являются аналоги минералоподобных образований: цирконолиты, монациты, апатиты, циркон и диоксид циркония, гранаты. Стеклокерамические матрицы получают такими же способами, но радионуклиды входят в состав как кристаллических, так и стеклообразных фаз. Недостатками этих способов являются применение высоких температур (в ряде методик - и высокого давления); длительное время синтеза. Во многих случаях требуется предварительное дорогостоящее фракционирование радионуклидов.
Наиболее близким к заявляемому является способ, включающий изготовление фосфатной керамики, целевая фаза которой состоит из природного аналога -кocнapитa(Na,K)Zr2(PO4)3NZP (HavkinsH. TScheetzBE. Guthrie G.D. Preparation of monophasic { NZP} radiophases: potential host matrices for the immobilization of reprocessed commercial high-level wastes // Proc. of sympos «Sci.Basis for Nucl. Waste Management XX». Pittsburg, PA: MRS, 1997. V.757. P.387-394). В данном прототипе жидкие ВАО смешивали с шихтой NZP, сушили, спекали, подвергали горячему прессованию (1100°С/100 МПа). Конечный продукт, кроме NZP, содержал в керамике фазы монацита, апатита, других окислов и соединений; их количество увеличивалось с ростом доли отходов. В указанной работе в матрицу NZP в позицию натрия встраивалось не более 4-7% цезия, а в позицию циркония - не более 7-8% хрома и железа, емкость этой керамики по отношению к РЗЭ оказалась совсем низкой. В приведенной работе скорость выщелачивания многих элементов из разработанной керамики была сопоставима с результатами для лучших образцов Синроков (10-3,-4 г/м2·сут), но для таких элементов как Cs, Sr, Ba она оказалась на два порядка ниже.
Задачей предлагаемого способа являлась иммобилизация неразделенных РАО в универсальную керамическую матрицу на основе устойчивых фаз-носителей радионуклидов с использованием простого и экономичного технологического процесса, позволяющего получить композицию с уровнем выщелачивания не ниже чем 3·10-2 для Cs и 10-5 г/м2·сут для Ln.
Поставленная задача решается в способе, предусматривающем осуществление следующих процессов:
1) Радионуклиды из жидких РАО (низко- и среднеактивных), сконцентрированных до уровня высокоактивных отходов (ВАО), частично или полностью сорбируют на промышленном или синтезированном аморфном цирконий-фосфатном сорбенте;
2) суспензию цирконий-фосфата вместе с отходами сушат, после чего в той же емкости (стальной контейнер) подвергают кальцинации и прокалке при температуре 900-1000°С; при этом радионуклиды оказываются внедренными в кристаллические решетки различных устойчивых минеральных фаз: коснарита, монацита, диоксида циркония и др.;
3) последней стадией процесса является капсуляция матрицы, содержащей радионуклиды, в стекло (через засыпку фритты в исходный контейнер с последующим оплавлением при температуре, не превышающей 1000°С).
По сравнению с прототипом в данном способе все элементы рафината, по результатам рентгенофазового анализа (РФА), прочно закреплены в узлах кристаллических решеток коснарита {(Na,K,Cs,Sr)Zr2(PO4)3}, монацита (Ln, An)PO4, окиси циркония (Zr, Ln)O2-x, цирконатов с перовскитовой структурой SrZrО3 и фосфат-дифосфата (Zr,An)4(PO4)4P2O7. Преимуществом предлагаемого способа является простота реализации (более низкие по сравнению с прототипом температуры синтеза, небольшое количество стадий);
экономическая целесообразность (существенная минимизация объема РАО; низкие энергозатраты; отсутствие сложного технологического оборудования). С учетом начала промышленного выпуска рентгеноаморфного фосфата циркония минимизируется потребность в предварительных лабораторных синтезах и реактивах. Именно эта базовая матрица оказалась универсальной для включения в кристаллокерамику практически всех содержащихся в составе РАО радионуклидов, причем большая их часть, включая лантаниды, встраивалась в решетку коснарита.
Следующие примеры иллюстрируют применение предлагаемого способа.
Пример 1 (прототип).
Жидкие РАО смешивали с реактивами, взятыми в стехиометрических количествах для получения NZP (NaZr2(PO4)3), сушили, подвергали прессованию, спекали при температуре 1200-1300°С. В конечном продукте содержание Cs и Sr не превышало 4-7 мас.%, емкость по лантанидам была еще меньше. Скорость выщелачивания Ln, Ni, Cr - 10-2-10-3, Cs и Sr 0,9-0,5 г/м2·сут.
Пример 2.
Азотнокислый рафинат - имитатор РАО, в котором содержалось (мас.%) UO2-5, ZrO2 20, Еu2Оз 0,2, Cs2O 0,3, упаривали ~ на 1/3. К нему добавляли синтезированный из хлористого цирконила аморфный фосфат циркония; затем при постепенном повышении температуры достигали высушивания и полного удаления окислов азота из смеси, после чего повышали температуру до 1000°С, при этой температуре происходила выдержка в течение 7 час. К охлажденному спеку присыпали стеклянную фритту (из алюмо-боро-силико-фосфатного стекла). Керамический спек, покрытый стеклянной фриттой, нагревали до полного расплавления стекла, после небольшой выдержки металлический контейнер с содержимым охлаждали, затем извлекали из печи. При таком температурном режиме потери цезия не происходило. По результатам тестов скорости выщелачивания из инкапсулированной в стекло керамики составили 2·10-2 для Cs, 10-4 для U и 10-5 для Еu (в г/м2·сут)
Пример 3.
В рафинате - имитаторе РАО компоненты содержались в следующих концентрациях: Ln2O3 (Ln=Ln,Ce,Gd,Eu) - 55, МоО3-12, BaO-9, SrO-5,6, CoO-8, Fe2O4-4,3, Сr2O3-1,3, Rb2O-1,8, Cs2O-14 г/л. Для связывания большого количества цезия в коснаритовую фазу с примерной формулой СS0,1Nа0,1Ln0,1Ва0,05Sr0,05-0,06Zr2(Р0,9Мо0,1O4)3 фосфат циркония синтезировали с добавлением рассчитанных по стехиометрии количеств NaCl и CsCl. Остальные стадии спекания и остекловывания проводили так же, как в примере 1.: рафинатный раствор упаривали на 1/3, смешивали с аморфным фосфатом циркония (в пропорции 80 г на 100 мл упаренного рафината), высушивали при постепенном повышении температуры (от 80 до 470°С за 10 часов), после чего высушенный материал нагревали до 1000°С, прокаливали при этой температуре в течение 7 часов и охлаждали. Кальцинат засыпали фриттой и стальной контейнер с содержимым нагревали до полного расплавления стекла (850 - 870°С), при этой температуре выдерживали ~0,5 час и охлаждали до 400°С, затем извлекали из печи. Очищенный от стеклянной капсулы керамический спек был подвергнут рентгенофазовому анализу, по результатам которого весь цезий вошел в коснаритовую решетку в виде CsZr2(PO4)3, остальные элементы вошли в другие коснаритовые фазы, а также в фазы фосфат-дифосфата и монацита.
Согласно проведенным тестам скорости выщелачивания Cs составили 2·10-2, Sr - 10-2, La - 10-5 г/м2·сут.
По аналогии с примерами 2 и 3 было проведено консервирование реальных BAO в условиях горячей камеры. Все операции проводили с помощью механических манипуляторов. Никаких дополнительных приспособлений не применялось. Загрязнения камеры не произошло, что позволяет сделать вывод о полной фиксации радиоцезия и других радионуклидов.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ИММОБИЛИЗАЦИИ ЖИДКИХ ВЫСОКОРАДИОАКТИВНЫХ ОТХОДОВ В СТЕКЛОКЕРАМИКУ | 2012 |
|
RU2494483C1 |
Способ иммобилизации жидких высокосолевых радиоактивных отходов | 2017 |
|
RU2645737C1 |
СПОСОБ СТАБИЛИЗАЦИИ ЖИДКИХ ВЫСОКОСОЛЕВЫХ ВЫСОКОАКТИВНЫХ ОТХОДОВ | 2008 |
|
RU2381580C1 |
Комплекс для иммобилизации радионуклидов из жидких ВАО | 2018 |
|
RU2702096C1 |
Способ иммобилизации радионуклидов Cs+ в алюмосиликатной керамике | 2017 |
|
RU2669973C1 |
СПОСОБ МАТРИЧНОЙ ИММОБИЛИЗАЦИИ ПРОМЫШЛЕННЫХ ОТХОДОВ РАДИОХИМИЧЕСКИХ И ХИМИКО-МЕТАЛЛУРГИЧЕСКИХ ПРОИЗВОДСТВ | 2005 |
|
RU2281573C1 |
СПОСОБ ЗАХОРОНЕНИЯ РАДИОАКТИВНЫХ ОТХОДОВ В ГОРНЫХ ПОРОДАХ | 1993 |
|
RU2064696C1 |
СПОСОБ ИММОБИЛИЗАЦИИ РАДИОНУКЛИДОВ ЩЕЛОЧНОЗЕМЕЛЬНЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В МИНЕРАЛЬНОЙ МАТРИЦЕ | 2010 |
|
RU2444800C1 |
СИЛИКАТНАЯ МАТРИЦА ДЛЯ КОНДИЦИОНИРОВАНИЯ РАДИОАКТИВНЫХ ОТХОДОВ | 2005 |
|
RU2302048C2 |
СПОСОБ ПОЛУЧЕНИЯ ТИТАН-, ЦИРКОНИЙ-, ГАФНИЙ-, ГЕРМАНИЙ- И ОЛОВОСОДЕРЖАЩИХ КЕРАМИК | 2010 |
|
RU2440957C1 |
Изобретение относится к области радиохимической технологии и может быть использовано для иммобилизации радиоактивных отходов. Способ иммобилизации жидких РАО в керамику включает концентрирование радиоактивного раствора, смешивание его с фосфатной матрицей и дальнейшую термическую обработку. Отходы, сконцентрированные до уровня ВАО, после смешивания с аморфным фосфатом циркония прокаливают до получения керамического спека. Спек капсулируют в стекло. Все стадии процесса проводят в едином реакционном сосуде. Остеклование проводят при температурах, не превышающих 1000°С. Изобретение позволяет получить устойчивые минералоподобные структурные формы: коснарит [Na,Cs,Sr,Ln)(Zr,An,Fe)2(PO4)3], монацит [(Ln,An)PO4], оксид циркония [(Zr,Ln,An)O2], которые обладают существенно большей емкостью почти ко всем радионуклидам, таким образом, в ходе одного технологического процесса происходит как закрепление радионуклидов в устойчивую поликристаллическую матрицу, так и создание дополнительного физического барьера в виде стеклянной капсулы. 1 з.п. ф-лы.
1. Способ иммобилизации жидких РАО в керамику, включающий концентрирование радиоактивного раствора, смешивание его с фосфатной матрицей и дальнейшую термическую обработку, отличающийся тем, что отходы, сконцентрированные до уровня ВАО, после смешивания с аморфным фосфатом циркония прокаливают до получения керамического спека, который капсулируют в стекло, причем все стадии процесса проводят в едином реакционном сосуде.
2. Способ по п.1, отличающийся тем, что прокаливание высушенной матрицы, содержащей радионуклиды, и ее остекловывание проводят при температурах, не превышающих 1000°С.
HavkinsH.TScheetzBE.Guthrie G.D.Preparation of monophasic {NZP} radiophases: potential host matrices for the immobilization of reprocessed commercial high-level wastes // Proc | |||
of sympos «Sci.Basis for Nucl | |||
Waste Management XX» | |||
Pittsburg, PA: MRS, 1997.v.757, p.387-394 | |||
СТЕКЛООБРАЗУЮЩИЙ ФОСФАТНЫЙ СОСТАВ ДЛЯ ИММОБИЛИЗАЦИИ АЛЮМИНИЙСОДЕРЖАЩИХ ЖИДКИХ ВЫСОКОАКТИВНЫХ ОТХОДОВ | 2001 |
|
RU2203513C2 |
СПОСОБ ВКЛЮЧЕНИЯ ВЫСОКОАКТИВНОГО КОНЦЕНТРАТА ТРАНСПЛУТОНИЕВЫХ И РЕДКОЗЕМЕЛЬНЫХ ЭЛЕМЕНТОВ В КЕРАМИКУ | 2008 |
|
RU2380775C1 |
Способ отверждения жидких радиоактивных отходов | 1978 |
|
SU699943A1 |
US 2004069953 A1, 15.04.2004. |
Авторы
Даты
2011-10-27—Публикация
2010-03-09—Подача