Изобретение относится к металлургии, а именно к способам получения неорганических материалов, в том числе содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза.
Из уровня техники известен способ получения тугоплавких неорганических материалов методом самораспространяющегося высокотемпературного синтеза, включающий приготовление реакционных смесей, их прессования и инициирование синтеза (Левашов Е.А., Рогачев А.С., Юхвид В.И., Боровинская И.П. Физико-химические и технологические основы самораспространяющегося высокотемпературного синтеза. М.: «Издательство БИНОМ», 1999 г. - 176 с.). Для получения компактных материалов данные способы включают наложение внешнего воздействия на реакционные смеси в ходе синтеза (газостатическое прессование, гидравлическое прессование и др.), что влечет применение дополнительного оборудования, усложнение процесса и снижает применимость способа.
Наиболее близким по технической сущности является способ получения сплава, включающий раздельное приготовление двух или более различных по составу и прочности оксидов металлов смесей с восстановителем и неметаллом, локальное воспламенение одной из смесей с последующим воспламенением образовавшимся расплавом других смесей под давлением газообразной среды до образования сплава необходимого состава (Патент РФ №2469816, МПК В22Р 3/23, 20.12.2012). Недостатком данного способа является трудность контролирования протекающих реакций самораспространяющегося высокотемпературного синтеза каждой из последовательно воспламеняемых расплавом смесей, что приводит к сложности получения сплава заданного состава, применение специальных реакторов для осуществления процесса синтеза под давлением газообразной среды. Кроме того, компактирование реакционных смесей, содержащих сажу (элементарный углерод) и/или чешуйчатый графит вызывает ряд трудностей, связанных с неудовлетворительной прессуемостью, что приводит к разрушению брикетов и также снижает применимость данных систем для получения компактных материалов.
Все это снижает универсальность известного способа.
Предлагаемый способ является более универсальным по отношению к прототипу.
Повышение универсальности способа выражается в том, что он позволяет получать компактные материалы, содержащие карбиды хрома и титана, без применения специальных реакторов и приложения внешних воздействий на реакционную систему в ходе синтеза. Применение углеродистого феррохрома как источника углерода для формирования карбидных составляющих значительно облегчает процесс компактирования порошкообразных реагентов, повышая прочность изготовленных из них скомпактированных брикетов, по сравнению с системами, содержащими элементарный углерод.
Способ осуществляется следующим образом.
Реакционную смесь, состоящую из порошкообразных титана и углеродистого феррохрома, взятых в отношении массы титана к массе углеродистого феррохрома от 0,2 до 0,8, компактируют любым доступным способом (гидравлическое прессование, изостатическое прессование, компактирование при помощи шнека и др.), после чего инициируют протекание самораспространяющегося высокотемпературного синтеза (СВС). Инициирование реакции СВС осуществляют различными способами, в зависимости от технического оснащения - путем объемного нагрева смеси в индукционных печах, либо печах сопротивления, путем локального нагрева искровым, дуговым либо плазменным разрядом и др. Применение в качестве одного из компонентов реакционной смеси ферросплава (углеродистого феррохрома) позволяет, с одной стороны, облегчить компактирование порошкообразной смеси, поскольку углерод содержится в связанном виде в феррохроме, с другой - получать компактные материалы методом СВС без приложения внешних воздействий на систему в ходе синтеза, поскольку железо, входящее в состав феррохрома, служит связкой и препятствует развитию усадочных процессов и возникновению трещин. В зависимости от требуемого количества карбида титана в материале, способ допускает применение среднеуглеродистого (≥65% Сr, ≤4% С) и высокоуглеродистого (≥60% Сr, ≤8% С) феррохрома (Д.Я. Поволоцкий, В.Е. Рощин, М.А. Рысс, А.И. Строганов, М.А. Ярцев Электрометаллургия стали и ферросплавов. - Учебное пособие для вузов. Изд. 2-е, перераб. и доп. - М: Металлургия, 1984 г. - 568 с.). Применение низкоуглеродистого феррохрома с содержанием углерода менее 1% затрудняет начало синтеза между компонентами реакционной смеси и не позволяет формировать карбидные составляющие титана в материале. Реакционная смесь с отношением массы титана к массе углеродистого феррохрома, равное 0,2, позволяет применять для получения компактных материалов минимальное количество титана, обеспечивая при этом формирование его карбидных составляющих в ходе синтеза. Реакционная смесь с отношением массы титана к массе углеродистого феррохрома, равное 0,8, позволяет использовать избыток титана, что приводит к значительному увеличению его карбидных составляющих в материале. Варьирование отношения массы титана к массе углеродистого феррохрома от 0,2 до 0,8 позволяет получать компактные материалы методом СВС с различным содержанием в них карбидных составляющих хрома и титана. Для улучшения условий протекания синтеза в реакционной системе способ допускает применение порошкообразных реагентов с крупностью частиц не более 1 мм. Применение порошкообразных материалов с размером частиц более 1 мм значительно ухудшает протекание синтеза. Для улучшения компактирования способ предусматривает добавление к порошкообразной реакционной смеси клеевого связующего в количестве, не превышающем 40% от массы сухой смеси. Добавление клеевого связующего в количестве, превышающем 40% от массы сухой смеси приводит к значительному газовыделению в ходе синтеза и, как следствие, к появлению трещин и пор в материале.
Для расширения области применения способ предусматривает использование для получения компактных материалов реакционной смеси, содержащей ферротитан с содержанием титана не менее 60% и углеродистый феррохром. Ферротитан, по сравнению с титаном, легче подвергается измельчению, а железо, входящее в состав ферросплавов, позволяет получать компактные материалы, содержащие карбиды хрома и титана, методом СВС с наименьшей пористостью без приложения внешних воздействий на систему в ходе синтеза. Реакционные смеси, приготовленные с учетом отношения массы ферротитана к массе углеродистого феррохрома от 0,2 до 0,8, позволяют получать компактные материалы методом СВС с различным содержанием в них карбидных составляющих хрома и титана.
Готовую реакционную смесь компактируют и инициируют реакцию СВС. После протекания синтеза образуется компактный материал, содержащий карбидные составляющие хрома и титана.
Примеры конкретного исполнения.
Пример 1. Реакционную смесь, содержащую титан и среднеуглеродистый феррохром с содержанием углерода ~4%, взятых в отношении массы титана к массе феррохрома, равным 0,30, компактировали в пресс-форме на гидравлическом прессе в цилиндры диаметром 20 мм и высотой 10 мм. После получения цилиндров инициировали СВС реакцию путем объемного нагрева в индукционной печи. Полученный в ходе синтеза компактный материал (цилиндры диаметром 20 мм и высотой 10 мм) имел незначительную пористость и содержал, по данным фазового анализа, карбиды хрома (Сr23С6, Сr7С3) и титана (TiC). За счет образования карбидных составляющих материал обладал значительной твердостью - 909÷1163 HV0,05 (69÷71 HRC).
Пример 2. То же, что в примере 1, только для увеличения содержания карбидных составляющих титана, реакционную смесь готовили с учетом отношения массы титана к массе высокоуглеродистого феррохрома (с содержанием углерода ~8%), равным 0,7. Результаты фазового анализа полученного материала свидетельствовали об увеличении доли карбидных составляющих титана по сравнению с материалом, приведенным в примере 1.
Пример 3. То же, что в примере 1, только в качестве реакционной смеси использовали смесь 70% ферротитана и высокоуглеродистого феррохрома с содержанием углерода ~8%, взятых в отношении массы ферротитана к массе феррохрома, равным 0,60. Полученный после синтеза материал содержал карбидные составляющие хрома и титана. Твердость материала находилась в пределах 909÷948 HV0,05 (68÷69 HRC).
Пример 4. То же, что в примере 3, только для улучшения компактирования к реакционной смеси произвели добавку органического клеевого связующего в количестве 30% от массы сухой смеси. Компактирование производили на гидравлическом прессе в квадратной пресс-форме размером 40×40 мм и высотой 20 мм. Технический результат аналогичен представленному в примере 3.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения металлокерамических, в том числе объёмнопористых материалов, содержащих нитрид титана, методом самораспространяющегося высокотемпературного синтеза | 2022 |
|
RU2809611C2 |
Способ получения композиционных алюмоматричных материалов, содержащих боридные составляющие хрома, методом самораспространяющегося высокотемпературного синтеза | 2022 |
|
RU2809613C1 |
Способ получения компактных материалов, содержащих диборид титана, методом самораспространяющегося высокотемпературного синтеза | 2016 |
|
RU2658566C2 |
Способ получения композиционных алюмоматричных материалов, содержащих карбид титана, методом самораспространяющегося высокотемпературного синтеза | 2022 |
|
RU2792903C1 |
Способ получения композиционных алюмоматричных материалов, содержащих борид титана, методом самораспространяющегося высокотемпературного синтеза | 2022 |
|
RU2793662C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО МЕТАЛЛИЧЕСКОГО СПЛАВА, СОДЕРЖАЩЕГО КАРБИД ТИТАНА | 2020 |
|
RU2739898C1 |
Способ формирования боридных составляющих титана на поверхности изделий из железоуглеродистых сплавов при лазерной обработке | 2023 |
|
RU2819007C1 |
Способ легирования поверхности изделий из титана или сплавов на его основе с формированием боридных составляющих хрома и титана методом лазерной обработки | 2023 |
|
RU2819010C1 |
СОСТАВ САМОЗАЩИТНОЙ ПОРОШКОВОЙ ПРОВОЛОКИ ДЛЯ ИЗНОСОСТОЙКОЙ НАПЛАВКИ | 2015 |
|
RU2645828C2 |
Способ изготовления композиционных материалов на основе Ti-B-Fe, модифицированных наноразмерными частицами AIN | 2020 |
|
RU2737185C1 |
Группа изобретений относится к получению компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза. Способ включает приготовление реакционной смеси из порошкообразных компонентов, компактирование смеси и инициирование протекания самораспространяющегося высокотемпературного синтеза (СВС). В способе по варианту 1 готовят реакционную смесь, состоящую из порошков титана и углеродистого феррохрома при отношении массы титана к массе углеродистого феррохрома от 0,2 до 0,8. В способе по варианту 2 готовят реакционную смесь, состоящую из порошков ферротитана с содержанием титана не менее 60% и углеродистого феррохрома при отношении массы ферротитана к массе углеродистого феррохрома от 0,2 до 0,8. Обеспечивается получение компактных материалов без применения специальных реакторов и приложения внешних воздействий на реакционную систему, а также обеспечивается повышение прочности скомпактированных материалов. 2 н. и 4 з.п. ф-лы, 4 пр.
1. Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза, включающий приготовление реакционной смеси из порошкообразных компонентов, компактирование реакционной смеси и инициирование синтеза, отличающийся тем, что реакционную смесь готовят из порошков титана и углеродистого феррохрома при отношении массы титана к массе углеродистого феррохрома от 0,2 до 0,8.
2. Способ по п. 1, отличающийся тем, что используют порошкообразные компоненты реакционной смеси крупностью, не превышающей 1 мм.
3. Способ по п. 2, отличающийся тем, что к порошкообразным компонентам реакционной смеси добавляют клеевое связующее в количестве, не превышающем 40% от массы сухой реакционной смеси.
4. Способ получения компактных материалов, содержащих карбиды хрома и титана, методом самораспространяющегося высокотемпературного синтеза, включающий приготовление реакционной смеси из порошкообразных компонентов, компактирование реакционной смеси и инициирование синтеза, отличающийся тем, что реакционную смесь готовят из порошков ферротитана с содержанием титана не менее 60% и углеродистого феррохрома при отношении массы ферротитана к массе углеродистого феррохрома от 0,2 до 0,8.
5. Способ по п. 4, отличающийся тем, что используют порошкообразные компоненты реакционной смеси крупностью, не превышающей 1 мм.
6. Способ по п. 5, отличающийся тем, что к порошкообразным компонентам реакционной смеси добавляют клеевое связующее в количестве, не превышающем 40% от массы сухой реакционной смеси.
СПОСОБ ПОЛУЧЕНИЯ СПЛАВА | 2010 |
|
RU2469816C2 |
СПОСОБ ИЗГОТОВЛЕНИЯ ФОРМОВАННОГО МЕТАЛЛОКЕРАМИЧЕСКОГО КОМПОЗИТНОГО МАТЕРИАЛА, ПОЛУЧЕННЫЙ ЭТИМ СПОСОБОМ МЕТАЛЛОКЕРАМИЧЕСКИЙ КОМПОЗИТНЫЙ МАТЕРИАЛ, ФОРМОВАННАЯ КОМПОЗИЦИЯ (ВАРИАНТЫ) И СПОСОБ ПОЛУЧЕНИЯ МЕТАЛЛИЧЕСКОГО АЛЮМИНИЯ | 1992 |
|
RU2114718C1 |
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТА НА ОСНОВЕ БОРИДОВ, КАРБИДОВ МЕТАЛЛОВ IV-VI И VIII ГРУПП | 2003 |
|
RU2228238C1 |
WO 2005068672 A1, 28.07.2005 | |||
SU 46044 A1, 29.02.1936. |
Авторы
Даты
2017-11-30—Публикация
2016-06-14—Подача