ФОСФАТНОЕ СТЕКЛО И СПОСОБ ЕГО ПОЛУЧЕНИЯ Российский патент 2017 года по МПК C03C3/64 C03B1/00 C03B5/02 

Описание патента на изобретение RU2637676C2

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться для визуализации излучения УФ диапазона и в устройствах записи информации, например, при формировании фемтосекундным лазерным излучением люминесцентных нанокластеров золота в объеме стекла.

Известен ряд силикатных и боратных стекол, содержащих в своем составе золото [1-3], в которых золото в стекольную шихту вводится через соль золота HAuCl4, при этом получают бесцветные или окрашенные стекла при выработке. Подобные стекла применяются в качестве фоточувствительных элементов для изготовления декоративных изделий или светофильтров. Однако для создания материалов для визуализации УФ излучения или материалов для устройств записи оптической памяти лазерными импульсами необходимо использовать стекла с высокой оптической однородностью и низкой кристаллизационной способностью. Более того, необходимо получать бесцветные стекла на этапе выработки, последующая термообработка при температурах ниже Tg или обработка лазерным излучением будет стимулировать восстановление ионов золота до атомарного состояния и их агрегацию в нанокластеры золота с размерами до 3 нм. Такие нанокластеры золота в силу их электронного строения проявляют широкополосную рекомбинационную люминесценцию в видимой области спектра (400-600 нм) при возбуждении в УФ диапазоне [4]. Наиболее перспективными стеклами для создания таких материалов являются фосфатные стекла в метафосфатной области составов, отличающиеся низкой кристаллизационной способностью и возможностью получения стекла с высокой оптической однородностью, низкой температурой Tg, отвечающей возможностью последующей термообработки при низких температурах (до 400°C) и использования малого количества лазерных импульсов для формирования нанокластеров золота. Однако известно [5], что при введении золота в фосфатную шихту в виде соли HAuCl4 происходит неконтролируемое полное или частичное окрашивание стекла на этапе выработки, что приводит к невозможности использования таких стекол в качестве визуализаторов УФ излучения или материалов для устройств записи оптической памяти.

Наиболее близким к заявляемому стеклу по технической сущности является стекло состава, мас.%: (55-65) P2O5, (8-12) BaO, (10-15) K2O, (1-4) SiO2, (5-10) Al2O3, (2-6) B2O3, (0,1-4,5) Nd2O3 [6]. Данное стекло обладает высокими химическими и механическими свойствами, пригодными для применения в качестве визуализатора и материалов для оптической памяти. Однако недостатком прототипа является отсутствие в составе стекла ионов или наночастиц золота, что делает невозможным получение люминесценции в видимой области спектра при возбуждении в УФ диапазоне, а также делает невозможным идею формирования люминесцирующих нанокластеров в объеме стекла для записи информации. Также недостатком прототипа является наличие в составе стекла ионов неодима Nd3+, приводящих к окрашиванию стекла в розовый цвет на этапе выработки, в то время как для вышеописанных применений требуется получение бесцветного стекла.

Задачей предлагаемого изобретения является создание бесцветного фосфатного стекла, характеризующегося широкополосной люминесценцией в видимой области спектра при последующей термообработке и пригодного для использования в качестве визуализаторов УФ излучения и материалов для устройств записи оптической памяти лазерным излучением.

Поставленная задача решается составом, включающим оксиды фосфора P2O5, кремния SiO2, алюминия Al2O3, бора B2O3, калия K2O и бария BaO и дополнительно включающим оксид олова SnO2 и наночастицы золота Аu при следующем соотношении компонентов, мас.%: (58,00-70,00) P2O5, (8,50-18,50) K2O, (7,10-8,90) Al2O3, (9,80-11,50) BaO, (3,70-5,20) B2O3, (1,80-2,30) SiO2, (1,10-1,25) SnO2, (0,005-0,02) Au (сверх 100%).

Поставленная задача также решается способом получения фосфатного стекла, включающим варку в электрической печи шахтного типа и выработку стекла в блок, что при подготовке шихты проводят синтез золя наночастиц золота Au из золотохлористоводородной кислоты HAuCl4⋅4H2O, глутатиона, тетрагидробората натрия NaBH4 и этилового спирта C2H5OH, перемешивают компоненты оксида кремния SiO2 в количестве 1,80-2,30 мас.%, оксида олова SnO2 в количестве 1,80-2,30 мас.% и синтезированный золь наночастиц золота Au в количестве 0,005-0,02 мас.% в кварцевом сосуде, выпаривают смесь в муфельной печи, перетирают смесь в агатовой ступке, перемешивают смесь с карбонатом калия K2CO3 (в пересчете на 6,50-18,50 мас.% K2O), гидроксидом алюминия Al(OH)3 (в пересчете на 7,10-8,90 мас.% Al2O3), карбонатом бария (в пересчете на 9,80-11,50 мас.% BaO), борной кислотой H3BO3 (в пересчете на 3,70-5,20 мас.% B2O3) в кварцевом сосуде, добавляют эту смесь в ортофосфорную кислоту H3PO4 (в пересчете на 58,00-70,00 мас.% P2O5), варку стекла проводят в одну стадию при температуре 1380-1420°C, далее проводят термообработку полученного стекла в муфельной печи в течение 3-4 ч при температуре 300-350°C.

В результате применения предлагаемого способа возможно получить бесцветное оптическое однородное фосфатное стекло, в котором золото находится в ионном или атомарном виде. Последующая дополнительная термообработка стекла при температуре 300-350°C приводит к формированию нанокластеров золота с размерами до 3 нм и выражается в широкополосной люминесценции в видимой области спектра в диапазоне 375-750 нм при возбуждении в УФ диапазоне 250-280 нм, при этом стекло остается бесцветным.

Пример 1: Способ получения фосфатного стекла состава (мас.%): P2O5 58,0, K2O 18,5, Al2O3 7,1, BaO 9,8, B2O3 3,7, SiO2 1,8, SnO2 1,1, Au 0,005 (сверх 100%). Синтез золя наночастиц золота Аu проводят из 60 мл этилового спирта, 40 мл дистиллированной воды, 0,01 г золотохлористоводородной кислоты, 0,06 г глутатиона, 5 мл 0,2М раствора борогидрида натрия. Проводят смешивание золя наночастиц Au в количестве 0,005 мас.% с компонентами SiO2 в количестве 1,8 мас.% и SnO2 в количестве 1,1 мас.% в кварцевом сосуде в течение 60 мин, выпаривание в муфельной печи при температуре 115°С в течение 60 мин и перетирание в агатовой ступке в течение 15 мин. Затем проводят смешивание этой смеси с карбонатом калия K2CO3 (в пересчете на 18,50 мас.% K2O), гидроксидом алюминия Al(OH)3 (в пересчете на 7,10 мас.% Al2O3), карбонатом бария (в пересчете на 9,80 мас.% BaO), борной кислотой H3BO3 (в пересчете на 3,70 мас.% B2O3) в кварцевом сосуде. Затем добавляют эту смесь в ортофосфорную кислоту H3PO4 (в пересчете на 58,00 мас.% P2O5). Варку стекла проводят в одну стадию в электрической печи шахтного типа при температуре 1420°С с выработкой стекла в блок. Стекло получается бесцветным, коэффициент поглощения k550=0,01 см-1. Последующая дополнительная термообработка стекла при температуре 350°C в течение 4 ч приводит к образованию широкополосной люминесценции в видимой области спектра с максимумом полосы на 551 нм и шириной полосы 206 нм, при возбуждении в УФ диапазоне на длине волны 280 нм.

Пример 2: Способ получения фосфатного стекла по примеру 1, отличающийся тем, что дополнительную термообработку стекла проводят при 300°C в течение 3 ч. Полученное стекло обладает широкополосной люминесценцией в видимой области спектра с максимумом полосы на 553 нм и шириной полосы 213 нм, при возбуждении в УФ диапазоне на длине волны 280 нм.

Пример 3: Способ получения фосфатного стекла по примеру 1, отличающийся составом стекла (мас.%): P2O5 70,0 K2O 6,5, Al2O3 7,10 BaO 9,8, B2O3 3,7, SiO2 1,8 SnO2 1,1, Au 0,02 (сверх 100%). Также отличающийся тем, что варку стекла проводят при температуре 1380°C, дополнительную термообработку стекла проводят при 320°C в течение 3 ч. Полученное стекло обладает широкополосной люминесценцией в видимой области спектра с максимумом полосы на 549 нм и шириной полосы 198 нм, при возбуждении в УФ диапазоне на длине волны 280 нм.

Источники информации

1. United States Patent №2515937 «Фоточувствительное золотое стекло и метод его получения», Стуки С.Д. Дата публикации 18.07.1950.

2. United States Patent №20110057154 «Проводящие стеклометаллические композиции и методы их получения», Джэйн X. Дата публикации 10.03.2010.

3. Chinese Patent №101798179 «Дихроичное стекло с нанозолотом и метод его получения», Дата публикации 11.08.2010.

4. Zheng J. et. al. Different sized luminescent gold nanoparticles. // Nanoscale. 2012. №4. C. 073-4083.

5. Сигаев B.H. и др. Синтез оксидных оптически однородных стекол, содержащих наночастицы золота. Спектральные и нелинейно-оптические свойства. // Стекло и керамика. 2013. №4. С. 5-40

6. Патент РФ №2426701 «Оптическое фосфатное стекло», Саркисов П.Д., Сигаев В.Н., Голубев Н.В., Савинков В.И. Дата публикации 20.08.2011.

Похожие патенты RU2637676C2

название год авторы номер документа
ЮВЕЛИРНАЯ ЭМАЛЬ 2011
  • Царева Елена Владимировна
RU2494054C2
СПОСОБ РАВНОМЕРНОГО ОБЪЕМНОГО ОКРАШИВАНИЯ ПРОЗРАЧНОГО МАТЕРИАЛА НА ОСНОВЕ СТЕКЛА 2021
  • Сигаев Владимир Николаевич
  • Шахгильдян Георгий Юрьевич
  • Атрощенко Григорий Николаевич
  • Липатьев Алексей Сергеевич
  • Лотарев Сергей Викторович
  • Зиятдинова Мариям Зиннуровна
RU2774528C1
ОПТИЧЕСКОЕ ФОСФАТНОЕ СТЕКЛО 2010
  • Саркисов Павел Джебраилович
  • Сигаев Владимир Николаевич
  • Голубев Никита Владиславович
  • Савинков Виталий Иванович
RU2426701C1
ФОСФАТНОЕ СТЕКЛО 2015
  • Степко Александр Александрович
  • Савинков Виталий Иванович
  • Шахгильдян Георгий Юрьевич
  • Сигаев Владимир Николаевич
RU2633845C2
ЮВЕЛИРНАЯ ЭМАЛЬ 2010
  • Спиридонов Юрий Алексеевич
  • Царева Елена Владимировна
RU2440934C1
ЛЕГКОПЛАВКАЯ СТЕКЛОКОМПОЗИЦИЯ 2018
  • Чакветадзе Джулия Кобаевна
  • Зинина Энжигель Мансуровна
  • Спиридонов Юрий Алексеевич
  • Сигаев Владимир Николаевич
RU2697352C1
ПРОЗРАЧНЫЙ СИТАЛЛ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2016
  • Сигаев Владимир Николаевич
  • Савинков Виталий Иванович
  • Закалашный Александр Вадимович
  • Алексеев Роман Олегович
RU2645687C1
ХРУСТАЛЬНОЕ СТЕКЛО 2006
  • Щепочкина Юлия Алексеевна
RU2331595C1
ОПТИЧЕСКОЕ СТЕКЛО 2017
  • Алексеев Роман Олегович
  • Савинков Виталий Иванович
  • Сигаев Владимир Николаевич
  • Шахгильдян Георгий Юрьевич
RU2672367C1
РЕНТГЕНОКОНТРАСТНОЕ СТЕКЛО ДЛЯ НАПОЛНИТЕЛЕЙ КОМПОЗИЦИОННЫХ СТОМАТОЛОГИЧЕСКИХ МАТЕРИАЛОВ 2023
  • Савинков Виталий Иванович
  • Зинина Энжегель Мансуровна
  • Клименко Наталия Николаевна
  • Сигаев Владимир Николаевич
  • Посохова Вера Фёдоровна
  • Чуев Владимир Петрович
  • Бузов Андрей Анатольевич
  • Казакова Валентина Сергеевна
RU2816453C1

Реферат патента 2017 года ФОСФАТНОЕ СТЕКЛО И СПОСОБ ЕГО ПОЛУЧЕНИЯ

Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам. Стекло содержит следующие компоненты, мас.%: P2O5 58,00-70,00; K2O 8,50-18,50; Al2O3 7,10-8,90; ВаО 9,80-11,50; B2O3 3,70-5,20; SiO2 1,80-2,30; SnO2 1,10-1,25 Au 0,005-0,02 (сверх 100%). При подготовке шихты проводят синтез золя наночастиц золота Au из золотохлористоводородной кислоты HAuCl4⋅4H2O, глутатиона, тетрагидробората натрия NaBH4 и этилового спирта С2Н5ОН. Полученный золь в количестве 0,005-0,02 мас. % перемешивают с оксидом кремния SiO2 в количестве 1,80-2,30 мас.%, оксидом олова SnO2 в количестве 1,80-2,30 мас.%. Выпаривают смесь в муфельной печи, перетирают смесь в агатовой ступке, перемешивают смесь с карбонатом калия K2CO3, гидроксидом алюминия Al(OH)3, карбонатом бария, борной кислотой Н3ВО3 в кварцевом сосуде, добавляют эту смесь в ортофосфорную кислоту Н3РО4. Варку стекла проводят в одну стадию при температуре 1380-1420°C, далее проводят термообработку полученного стекла в муфельной печи в течение 3-4 ч при температуре 300-350°C. 2 н.п. ф-лы, 1 пр.

Формула изобретения RU 2 637 676 C2

1. Фосфатное стекло, включающее компоненты Р2О5, K2O, Al2O3, BaO, В2О3, SiO2, отличающееся тем, что дополнительно введен оксид олова SnO2 и золь наночастиц золота Au при следующих соотношениях компонентов, мас.%:

P2O5 58,00-70,00 K2O 8,50-18,50 Al2O3 7,10-8,90 ВаО 9,80-11,50 B2O3, 3,70-5,20 SiO2 1,80-2,30 SnO2 1,10-1,25 Au 0,005-0,02 (сверх 100%)

2. Способ получения фосфатного стекла по п. 1, включающий варку в электрической печи и выработку стекла в блок, отличающийся тем, что при подготовке шихты проводят синтез золя наночастиц золота Au из золотохлористоводородной кислоты HAuCl4⋅4H2O, глутатиона, тетрагидробората натрия NaBH4 и этилового спирта С2Н5ОН, перемешивают компоненты оксида кремния SiO2 в количестве 1,80-2,30 мас.%, оксида олова SnO2 в количестве 1,80-2,30 мас.% и синтезированный золь наночастиц золота Au в количестве 0,005-0,02 мас.% в кварцевом сосуде, выпаривают смесь в муфельной печи, перетирают смесь в агатовой ступке, перемешивают смесь с карбонатом калия K2CO3 (в пересчете на 8,50-18,50 мас.% K2O), гидроксидом алюминия Al(OH)3 (в пересчете на 7,10-8,90 мас.% Al2O3), карбонатом бария (в пересчете на 9,80-11,50 мас.% ВаО), борной кислотой Н3ВО3 (в пересчете на 3,70-5,20 мас.% В2О3) в кварцевом сосуде, добавляют эту смесь в ортофосфорную кислоту Н3РО4 (в пересчете на 58,00-70,00 мас.% Р2О5), варку стекла проводят в одну стадию при температуре 1380-1420°C, далее проводят термообработку полученного стекла в муфельной печи в течение 3-4 ч при температуре 300-350°C.

Документы, цитированные в отчете о поиске Патент 2017 года RU2637676C2

ОПТИЧЕСКОЕ ФОСФАТНОЕ СТЕКЛО 2010
  • Саркисов Павел Джебраилович
  • Сигаев Владимир Николаевич
  • Голубев Никита Владиславович
  • Савинков Виталий Иванович
RU2426701C1
ФОСФАТНОЕ СТЕКЛО ДЛЯ ПОГЛОЩАЮЩИХ ОБОЛОЧЕК ДИСКОВЫХ АКТИВНЫХ ЭЛЕМЕНТОВ 2014
  • Арбузов Валерий Иванович
  • Ворошилова Марина Васильевна
  • Никитина Светлана Игоревна
  • Смирнов Роман Владимирович
  • Федоров Юрий Кузьмич
RU2554961C1
ЛАЗЕРНОЕ ФОСФАТНОЕ СТЕКЛО 2012
  • Патрикеев Алексей Павлович
  • Белоусов Сергей Петрович
  • Герасимов Владимир Михайлович
  • Игнатов Александр Николаевич
  • Поздняков Анатолий Ермолаевич
  • Суркова Валентина Федоровна
  • Авакянц Людмила Игоревна
RU2500059C1
ОПТИЧЕСКОЕ СТЕКЛО 1993
  • Мокин Н.К.
  • Молев В.И.
  • Кожевников А.А.
  • Сизов С.Н.
  • Лодочкина Л.П.
RU2036172C1
US 7294594 B2, 13.11.2007 .

RU 2 637 676 C2

Авторы

Шахгильдян Георгий Юрьевич

Степко Александр Александрович

Савинков Виталий Иванович

Сигаев Владимир Николаевич

Даты

2017-12-06Публикация

2015-12-10Подача