Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных) и усилителей лазерных импульсов сверхкороткой длительности, генерирующих в ближней инфракрасной области спектра.
Известно иттербиевое фосфатное стекло состава, мол.%: 60-75 Р2О5, 10-30 Yb2O3, 0-30 комбинация компонентов X2O3, R2O, МО. X2O3 может присутствовать в концентрации 0-26 мол.%, а X соответствует Al, В, La, Sc, Y, или их смеси. R2O может присутствовать в концентрации 0-26 мол.%, a R соответствует Li, Na, K, или их смеси. МО может присутствовать в концентрации 0-26 мол.%, а М соответствует Mg, Са, Sr, Ва, Zn, или их смеси (Ytterbium-phosphate glass, патент US 7,531,473 В2).
Недостатками известного стекла являются низкие влагостойкость и термопрочность, а также высокие потери на кооперативную люминесценцию ионов Yb3+ и отсутствие люминесценции вблизи длины волны 1065 нм, что затрудняет его использование в полевых условиях и мешает получению эффективной генерации при высоком уровне накачки в широком диапазоне.
Известно стекло состава, мол.%: 22 MgF2, 32-52 BaF2, 5-25 PbF2, 20 Al(PO3)3, 1 YbF3 (Yb3+ doped fluorine phosphorous glass with high crystallization stability and preparing method thereof, патент CN101269913 (А) от 2008-09-24).
Основным недостатком известного стекла является низкая концентрация ионов Yb3+ и полное отсутствие ионов Nd3+, что не позволяет получать высокую удельную мощность генерации и широкую полосу люминесценции.
Наиболее близким к заявляемому стеклу по технической сущности является стекло состава, мас. %: (55-65) P2O5, (8-12) ВаО, (10-15) K2O, (1-4) SiO2, (5-10) Al2O3, (2-6) B2O3, (0,1-4,5) Nd2O3 (RU 2426701). Данное стекло обладает временем затухания люминесценции, равным 279 мкс, и эффективной шириной полосы люминесценции, равной 27 нм, при концентрации ионов Nd3+, равной 3.074⋅1020 1/см3.
Недостатком прототипа является невозможность получения лазерной генерации в широкой спектральной области 980-1070 нм.
Задачей предлагаемого изобретения является создание стекла, характеризующегося полосой люминесценции с эффективной шириной не менее 90 нм и пригодного для использования в качестве активной среды лазерных устройств, работающих в режиме получения импульсов сверхкороткой длительности, и усилителей чирпированных фемто- и пикосекундных лазерных импульсов.
Для решения поставленной задачи люминесцирующее фосфатное стекло, содержащее оксиды фосфора Р2О5, кремния SiO2, алюминия Al2O3, бора В2О3, неодима Nd2O3, калия К2О и бария ВаО, дополнительно содержит оксид иттербия Yb2O3 при следующем соотношении компонентов, мол.%: (45,32-56,78) P2O5, (1,98-9,73) SiO2, (6,05-11,67) Al2O3, (5,35-20,5) B2O3, (12,41-18,43) К2О, (6,1-9,71) ВаО, (0,15-0,59) Yb2O3, (0,73-1,52) Nd2O3.
Для синтеза данного оптического фосфатного стекла (далее по тексту - стекла) использовались следующие исходные материалы: ортофосфорная кислота Н3РО4 (ХЧ), оксид кремния SiO2 квалификации ОСЧ, оксид иттербия Yb2O3 и оксид неодима (Nd2O3) квалификации ОСЧ, остальные реактивы квалификации ХЧ. Использовалась двухстадийная технология варки. На первой стадии осуществлялась варка стекольной фритты в электрической печи шахтного типа в кварцевом сосуде с размешиванием расплава кварцевой мешалкой. На второй стадии проводился перевар полученной фритты в индукционной печи в платиновом тигле с барботированием стекломассы сухим кислородом для снижения концентрации ОН--групп. Температура варки фритты и стекла составляла 1350°С.
Уменьшение концентраций Yb2O3 и Nd2O3 ниже заявляемых нецелесообразно из-за низкой интенсивности люминесценции. Увеличение концентрации Yb2O3 сверх заявляемой нецелесообразно из-за изменения спектра люминесценции. Изменение концентрации остальных компонентов в заявляемых пределах слабо влияет на спектр и время жизни люминесценции заявляемого стекла.
Составы (по синтезу) заявляемого стекла и средние длительности затухания люминесценции сведены в таблицу 1. Коэффициент поглощения синтезированных стекол в области основного колебания групп О-Н (λ=3000 см-1) составлял 2,2-3,0 см-1.
На фигуре 1 изображены спектры люминесценции при длине волны возбуждения 532 нм для образца №7 (1) и прототипа (2). Из спектров люминесценции образца и прототипа видно, что образец заявляемого стекла обладает более широкой полосой люминесценции, чем прототип.
Заявляемое стекло характеризуется низкой склонностью к кристаллизации и устойчивостью к воздействию влажной атмосферы.
Пример 1. Образец фосфатного стекла, включающий (мол.%) 56,78 P2O5, 2,06 SiO2, 6,19 Al2O3, 14,25 B2O3, 6,47 ВаО, 13,16 K2O, 0,77 Nd2O3, 0,31 Yb2O3, получен переваркой с барботированием осушенным кислородом при 1350°С в платиновом тигле фриты стекла, сваренного при температуре 1350°С в электрической печи с SiC нагревателями шахтного типа, в тигле из кварцевого стекла объемом 300 мл. Смесь порошкообразных сырьевых материалов предварительно перемешали в пластиковом сосуде в течение 2 часов на валковой мельнице, далее получившуюся однородную смесь смешали с ортофосфорной кислотой, для прохождения реакций образования фосфатов. Загрузку жидкой шихты в тигель производили при температуре 1000°С малыми порциями. После провара стекло вырабатывалось на стальную плиту, покрытую тонким слоем графита. Полученную отливку раскалывали для отбраковки неоднородных участков стекла. После отбора кусков фриты производилась варка стекла в платиновом тигле с барботированием кислородом в течение 1 часа. Расплав стекла вырабатывался на разогретую до 450°С стальную плиту. Отливка стекла отжигалась в муфельной печи в течение 4 часов с последующим инерционным снижением температуры. Полученный материал имеет полосу люминесценции с эффективной шириной, равной 92 нм. Длительность затухания люминесценции составила 1142 мкс.
Пример 2. Фосфатное стекло, полученное в соответствии с режимом варки примера 1, отличающееся изменением состава стекла. Состав стекла (по синтезу) из примера 2 включает в себя оксиды (мол.%) 45,32 P2O5, 9,73 SiO2, 11,67 Al2O3, 13,44 B2O3, 6,1 ВаО, 12,41 K2O, 0,73 Nd2O3, 0,59 Yb2O3. Полученный материал имеет полосу люминесценции с эффективной шириной, равной 90,5 нм. Длительность затухания люминесценции составила 764 мкс.
Пример 3. Фосфатное стекло, полученное в соответствии с режимом варки примеров 1 и 2, отличающееся изменением состава стекла. Состав стекла (по синтезу) из примера 3 включает в себя оксиды (мол.%) 47 P2O5, 4,04 SiO2, 6,05 Al2O3, 13,94 B2O3, 9,49 ВаО, 18,03 K2O, 1,14 Nd2O3, 0,31 Yb2O3. Полученный материал имеет полосу люминесценции с эффективной шириной, равной 92,5 нм. Длительность затухания люминесценции составила 946 мкс.
Пример 4. Фосфатное стекло, полученное в соответствии с режимом варки примеров 1-3, отличающееся изменением состава стекла. Состав стекла (по синтезу) из примера 4 включает в себя оксиды (мол.%) 46,08 P2O5, 1,98 SiO2, 7,12 Al2O3, 20,5 B2O3, 7,76 ВаО, 15,15 K2O, 1,11 Nd2O3, 0,3 Yb2O3. Полученный материал имеет полосу люминесценции с эффективной шириной, равной 91,5 нм. Длительность затухания люминесценции составила 982 мкс.
Пример 5. Фосфатное стекло, полученное в соответствии с режимом варки примеров 1-4, отличающееся изменением состава стекла. Состав стекла (по синтезу) из примера 5 включает в себя оксиды (мол.%) 51,42 P2O5, 5,06 SiO2, 6,07 Al2O3, 15,73 B2O3, 7,14 ВаО, 12,91 K2O, 1,52 Nd2O3, 0,15 Yb2O3. Полученный материал имеет полосу люминесценции с эффективной шириной, равной 90,2 нм. Длительность затухания люминесценции составила 875 мкс.
Пример 6. Фосфатное стекло, полученное в соответствии с режимом варки примеров 1-5, отличающееся изменением состава стекла. Состав стекла (по синтезу) из примера 6 включает в себя оксиды (мол.%) 52,01 P2O5, 5,12 SiO2, 9,21 Al2O3, 7,07 B2O3, 8,02 ВаО, 17,63 K2O, 0,77 Nd2O3, 0,16 Yb2O3. Полученный материал имеет широкую полосу люминесценции с эффективной шириной, равной 92 нм. Длительность затухания люминесценции составила 936 мкс.
Пример 7. Фосфатное стекло, полученное в соответствии с режимом варки примеров 1-6, отличающееся изменением состава стекла. Состав стекла (по синтезу) из примера 7 включает в себя оксиды (мол.%) 49,92 P2O5, 6,1 SiO2, 9,76 Al2O3, 7,02 B2O3, 7,97 ВаО, 18,16 K2O, 0,76 Nd2O3, 0,31 Yb2O3. Полученный материал имеет широкую полосу люминесценции с эффективной шириной, равной 94 нм. Длительность затухания люминесценции составила 1153 мкс.
Пример 8. Фосфатное стекло, полученное в соответствии с режимом варки примеров 1-7, отличающееся изменением состава стекла. Состав стекла (по синтезу) из примера 8 включает в себя оксиды (мол.%) 48,94 P2O5, 6,19 SiO2, 9,91 Al2O3, 5,35 B2O3, 9,71 ВаО, 18,43 K2O, 1,16 Nd2O3, 0,31 Yb2O3. Полученный материал имеет широкую полосу люминесценции с эффективной шириной, равной 91,6 нм. Длительность затухания люминесценции составила 973 мкс.
Таким образом, заявляемое стекло в отличие от прототипа характеризуется эффективной широкополосной люминесценцией, что позволяет использовать его для получения перестраиваемой генерации в спектральной области 980-1070 нм. Это обеспечивает заявляемому стеклу преимущество в качестве активного элемента при получении оптической генерации или ее усиления в указанной области спектра.
название | год | авторы | номер документа |
---|---|---|---|
ЛЮМИНЕСЦИРУЮЩЕЕ ФОСФАТНОЕ СТЕКЛО | 2015 |
|
RU2576761C9 |
ОПТИЧЕСКОЕ ФОСФАТНОЕ СТЕКЛО | 2010 |
|
RU2426701C1 |
ФОСФАТНОЕ СТЕКЛО И СПОСОБ ЕГО ПОЛУЧЕНИЯ | 2015 |
|
RU2637676C2 |
ЛЮМИНЕСЦИРУЮЩИЙ СТЕКЛОКРИСТАЛЛИЧЕСКИЙ МАТЕРИАЛ | 2020 |
|
RU2756886C1 |
ЛЮМИНЕСЦИРУЮЩЕЕ СТЕКЛО | 2014 |
|
RU2548634C1 |
ЛАЗЕРНОЕ ЭЛЕКТРООПТИЧЕСКОЕ СТЕКЛО И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2012 |
|
RU2531958C2 |
ЛЮМИНЕСЦИРУЮЩЕЕ ГЕРМАНАТНОЕ СТЕКЛО | 2008 |
|
RU2383503C1 |
УЛЬТРАШИРОКОПОЛОСНЫЕ ЛАЗЕРНЫЕ СТЕКЛА ДЛЯ КОРОТКОИМПУЛЬСНЫХ ЛАЗЕРОВ С ВЫСОКОЙ ПИКОВОЙ МОЩНОСТЬЮ | 2013 |
|
RU2629499C2 |
РЕГУЛИРОВКА ДЛИНЫ ВОЛНЫ ИЗЛУЧЕНИЯ РЕДКОЗЕМЕЛЬНОГО ИОНА В СТЕКЛЕ НА ОСНОВЕ ФОСФАТА С ИСПОЛЬЗОВАНИЕМ ОКСИДА ЦЕРИЯ | 2013 |
|
RU2636985C2 |
Стекло | 2017 |
|
RU2661959C1 |
Изобретение относится к области оптического материаловедения, в частности к фосфатным стеклам, которые могут использоваться в качестве активных сред лазеров (в том числе волоконных) и усилителей лазерных импульсов сверхкороткой длительности, генерирующих в ближней инфракрасной области спектра. Технический результат - обеспечение эффективной широкополосной люминесценции в интервале длин волн 980-1070 нм и пригодность для использования в качестве активной среды лазера и лазерных усилителей. Фосфатное стекло, содержащее оксиды фосфора Р2О5, кремния SiO2, алюминия Al2O3, бора B2O3, неодима Nd2O3, калия К2О и бария ВаО, дополнительно содержит оксид иттербия Yb2O3 при следующем соотношении компонентов, мол.%: P2O5 45,32-56,78, SiO2 1,98-9,73, Al2O3 6,05-11,67, B2O3 5,35-20,5, K2O 12,41-18,43, ВаО 6,1-9,71, Yb2O3 0,15-0,59, Nd2O3 0,73-1,52. 8 пр., 1 табл., 1 ил..
Фосфатное стекло, содержащее оксиды фосфора Р2О5, кремния SiO2, алюминия Al2O3, бора B2O3, неодима Nd2O3, калия К2О и бария ВаО, отличающееся тем, что оно дополнительно содержит оксид иттербия Yb2O3 при следующем соотношении компонентов, мол.%:
RU 24267011 C1, 20.08.2011 | |||
ЛАЗЕРНОЕ ФОСФАТНОЕ СТЕКЛО | 2012 |
|
RU2500059C1 |
ДОБАВКА К СТЕКЛУ | 1997 |
|
RU2131402C1 |
СПОСОБ ЭКСПРЕССНОГО ОПРЕДЕЛЕНИЯ КИНЕМАТИЧЕСКОЙ ВЯЗКОСТИ АВИАЦИОННЫХ КЕРОСИНОВ И ДИЗЕЛЬНЫХ ТОПЛИВ | 2004 |
|
RU2263301C1 |
US 7531473 B2, 25.08.2013 | |||
US 9118166 B2, 25.08.2015 | |||
US 4075120 A, 21.02.1978. |
Авторы
Даты
2017-10-18—Публикация
2015-11-19—Подача