Способ получения сверхпластичного плакированного материала на основе алюминия Российский патент 2017 года по МПК B23K20/04 B32B15/01 B23K103/10 

Описание патента на изобретение RU2637842C1

Изобретение относится к области металлургии, преимущественно к термической обработке и обработке металлов давлением, и предназначено для изготовления плакированных сверхпластичных слоистых листов из алюминиевого сплава с повышенной коррозионной стойкостью.

Метод сверхпластической формовки (СПФ) - перспективная технология получения изделий сложных форм. Основным требованием для достижения сверхпластичности и использования сплавов для сверхпластической формовки является формирование стабильной мелкозернистой структуры (И.И. Новиков, В.К. Портной. Сверхпластичность сплавов с ультрамелким зерном. 1981). Сдерживающим фактором использования эффекта сверхпластичности в промышленности является отсутствие сплавов, обладающих одновременно высокими скоростями сверхпластичности и высокими механическим свойствами при комнатной температуре. Известны сплавы и способы изготовления листов высокопрочных алюминиевых сплавов с мелкозернистой структурой (АА 7000 серии), которые описаны в ряде патентов.

Так, в патенте US 4618382 от 21.10.1986 рассмотрен метод получения сверхпластичных листов из сплава Al-Zn-Mg, обеспечивающий удлинение 490% при скорости деформации 10-3 с-1 при 510°С.

В патенте US 4645543A от 28.02.1983 предложен сплав на основе системы Al-Mg-Cu, имеющий удлинение 330-800% в интервале температур 400-600°С и скорости деформации 10-3 с-1.

Однако данные сплавы имеют размер зерна около 10-12 мкм и сверхпластичны только в интервале скоростей 10-5-10-3 с-1.

В патенте РФ 2491365 от 27.08.2013 предложен сплав на основе системы Al-Zn-Mg-Cu, обладающий высокоскоростной сверхпластичностью и высокой прочностью. Недостатком данного сплава является низкая коррозионная стойкость, что ограничивает его применение. Получение плакированного алюминиевого листа, состоящего из коррозионностойкого поверхностного слоя и прочного внутреннего слоя, позволит решить эту проблему.

Однако использование стандартных плакирующих несверхпластичных материалов, таких как чистый Al или Al - 1% Zn, для защиты от коррозии приводит к снижению относительно удлинения примерно в 2 раза, при этом плакирующий слой разрушается в процессе СПФ после небольшой деформации. По этой причине необходимо, во-первых, чтобы плакирующий материал проявлял сверхпластичность в тех же условиях деформации, что и сплав-основа, во-вторых, чтобы он имел хорошую коррозионную стойкость, в-третьих, плакирующий сплав должен иметь достаточную технологическую пластичность для обеспечения процесса сварки слоев методом горячей прокатки.

Среди существующих способов (технологий) в промышленности известны способы получения слоистых листов различных сплавов. Изобретение RU 2388582 от 10.05.2010 описывает изготовление продукта с однослойной или многослойной плакировкой, обладающего высокой прочностью и коррозионной стойкостью, где получают сварной пакет, в котором материал основы и плакирующий материал являются разными сплавами, однако данный материал не обладает сверхпластичностью.

Патенты SU 720890 А1 от 27.11.2004 описывает получение плакированного листа для повышения прочности низкопрочных алюминиевых сплавов, описанная технология также не позволяет достичь сверхпластичного состояния.

Наиболее близким техническим решением к заявляемому способу является свидетельство к патенту RU 2388582 С2 от 27.10.2005, по которому в результате получают слоистую плиту, в сборке пакета основы из алюминиевого сплава и с двухсторонней плакировкой алюминиевыми слоями из более прочного металла. Получают пакет при нагреве и горячей прокатке. В процессе сборки на плакирующий слой накладывают лист из сплава основы, толщина которого составляет 10-30% от толщины пакета, а прокатку ведут с обжатием на первом проходе, равным относительной толщине накладываемого листа.

Однако описываемый материал и технология не обеспечивают получения мелкозернистой структуры, необходимой для сверхпластической формовки (размер зерна менее 10 мкм).

Техническим результатом данного изобретения является получение предназначенного для сверхпластической формовки плакированного листа, состоящего из внешних слоев коррозионностойкого сверхпластичного сплава и внутреннего слоя из высокопрочного алюминиевого сплава с однородной мелкозернистой структурой, формирующейся во время сверхпластической деформации.

Способ получения сверхпластичного плакированного материала на основе алюминия, включающий получение высокопрочной плиты толщиной 13-13,5 мм из сплава на основе алюминия, содержащего, мас. %: 3,5-4,5 цинка, 3,5-4,5 магния, 0,6-1,0 меди, 2,0-3,0 никеля, 0,25-0,3 циркония, и плакирующих листов толщиной 1-1,1 мм из алюминиевого сплава, предварительную химическую обработку контактных поверхностей плиты и плакирующих листов последовательно 40%-ным раствором NaOH воде, 5%-ным раствором HNO3 в воде и тетрахлорметаном, размещение плакирующих листов на поверхностях высокопрочной плиты и сварку высокопрочной плиты с плакирующими листами методом горячей прокатки при температуре 400-460°С с обжатием за первый проход не менее 50% и суммарным обжатием 70-80% и последующей холодной прокатки с обжатием 70-80% до получения плакированного материала толщиной 1 мм.

Для решения поставленной задачи предлагается плакировать высокопрочный сплав, рассмотренный в патенте РФ 2491365 от 27.08.2013, коррозионностойкими сплавами Al-(2,7-3,5)%Mg-(0,25-0,35)%Zr, Al-(8,0-8,5)%Mg-(4-4,5)%Si, Al-(3,6-4,0)%Mg-(2,0-2,4)%Si-(0,25-0,35)%Zr, Al-(4,8-5,3)%Zn-(4,8-5,3)%Ca. Суммарное содержание примесей в сплавах не должно превышать 0,3%.

В сплаве Al-(2,7-3,5)%Mg-(0,25-0,35)%Zr концентрация магния находится в интервале 2,7-3,5%. Введение более 3,5% магния приводит к снижению коррозионной стойкости сплава, а при концентрации менее 2,7% магний не обеспечивает должного упрочнения. Введение циркония более 0,35% может привести к образованию крупных фаз Al3Zr кристаллизационного происхождения. Введение менее 0,25% циркония в сплав не обеспечивает необходимой плотности распределения наноразмерных частиц Al3Zr после термической обработки, что приводит к неоднородности структуры и снижению показателей сверхпластичности.

Листы из сплава Al-(2,7-3,5)%Mg-(0,25-0,35)%Zr получают по следующей технологической схеме: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются двухступенчатому гомогенизационному отжигу при температуре 360°С (4 ч) + 420°С (4 ч) и горячей прокатке с обжатием 60% при температуре 360°С, за которой следует холодная прокатка с обжатием 70% до толщины 1 мм.

Состав сплава Al-(4,8-5,3)%Zn-(4,8-5,3)%Са должен находиться вблизи точки тройной эвтектики в системе Al-Zn-Са. Допустимые концентрационные диапазоны легирующих элементов обусловлены составами, при которых различия в свойствах не превышают величины доверительного интервала. Листы из сплава Al-(4,8-5,3)%Zn-(4,8-5,3)%Са получают по следующей технологической схеме: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует прокатка с охлаждением с начальной температуры 450°С до 1 мм.

Сплавы Al-(8,0-8,5)%Mg-(4-4,5)%Si и Al-(3,6-4,0)%Mg-(2,0-2,4)%Si-(0,25-0,35)%Zr лежат на квазибинарном разрезе системы Al-Mg-Si, поэтому соотношение концентраций Mg : Si должно составлять 1,65-1,75, во избежание образования крупных выделений кремния, а также фазы Al8Mg5, снижающих коррозионную стойкость.

Листы из сплавов Al-(8,0-8,5)%Mg-(4-4,5)%Si и Al-(3,6-4,0)%Mg-(2,0-2,4)%Si-(0,25-0,35)%Zr получают по следующей технологической схеме: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует холодная прокатка с обжатием 50% до толщины 1 мм.

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)%Mg-(3,5-4,5)% Zn-(0,6-1,0)% Cu-(2-3)% Ni-(0,25-0,30)% Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13 мм.

Листы плакирующего сплава помещают на две наибольшие по площади поверхности плиты высокопрочного сплава-основы таким образом, чтобы поверхности плиты оказались полностью покрыты плакирующими листами. При этом, во избежание образования листе дефектов в области сопряжения слоев, все контактный поверхности должны быть тщательно обработаны химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 400-460°С, т.к. в данном температурном интервале полностью проходит сварка контактных поверхностей. При более низких или более высоких температурах у материалов основы и плакировки наблюдается различная технологическая пластичность, вследствие чего деформация между базовым слоем и плакирующими слоями распределяется неравномерно, что приводит к ухудшению качества соединения. Для эффективной сварки, величина обжатия за первый проход должна составлять не менее 50%. При этом суммарная степень деформации в процессе горячей прокатки должна составлять 70-80%. Финальной операцией является холодная прокатка со степенью деформации 70-80% до общей толщины 1 мм. Более низкие или более высокие степени деформации приводят к изменению температуры начала рекристаллизации материала, что негативно сказывается на показателях сверхпластичности.

Пример 1

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)% Mg-(3,5-4,5)% Zn-(0,6-1,0)% Cu-(2-3)% Ni-(0,25-0,30)% Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13 мм.

Коррозионностойкий плакирующий сплав состава Al-(2,7-3,5)%Mg-(0,25-0,35)%Zr получен по следующей технологии.

Первой операцией является изготовление слитков методом наполнительного литья в медную водоохлаждаемую изложницу. Температура расплава перед разливкой должна составлять не менее 830°С (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются двухступенчатому гомогенизационному отжигу при температуре 360°С (4 ч) + 420°С (4 ч) и горячей прокатке с обжатием 60% при температуре 360°С, за которой следует холодная прокатка с обжатием 70% до толщины 1,1 мм.

Перед сваркой все контактные поверхности тщательно обрабатываются химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 410±10°С с суммарным обжатием 80% и последующей холодной прокаткой с обжатием 70% до толщины 1 мм.

В листе, плакированном данным сплавом, после нагрева до температуры СПД наблюдается нерекристаллизованная структура во всей толщине структура, что позволяет осуществлять сверхпластическую формовку листов. Полученный плакированный сверхпластичный алюминиевый лист имеет δ 340±10% при температуре 440°С и скорости деформации 10-2 с-1. Механические свойства практически не снижаются после испытания на общую коррозию и составляют σт=470±10 МПа и σв=530±10 МПа.

Пример 2

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)% Mg-(3,5-4,5)% Zn-(0,6-1,0)% Cu-(2-3)% Ni-(0,25-0,30)% Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13,5 мм.

Коррозионностойкий плакирующий сплав состава Al-(8,0-8,5)%Mg-(4-4,5)%Si получен по следующей технологии.

Первой операцией является изготовление слитков методом наполнительного литья в медную водоохлаждаемую изложницу. Температура расплава перед разливкой должна составлять не менее 750°С (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует холодная прокатка с обжатием 50% до толщины 1 мм.

Перед сваркой все контактные поверхности тщательно обрабатываются химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 450±10°С с суммарным обжатием 80% и последующей холодной прокаткой с обжатием 70% до толщины 1 мм.

В листе, плакированном данным сплавом, после нагрева до температуры СПД, наблюдается нерекристаллизованная структура в базовом слое и мелкозернистая структура в плакирующем слое (5-6 мкм) после нагрева до температуры СПД, что позволяет осуществлять сверхпластическую формовку листов. Полученный плакированный сверхпластичный алюминиевый лист имеет δ более 370±10% при температуре 440°С и скорости деформации 10-2 с-1. Механические свойства практически не снижаются после испытания на общую коррозию и составляют σт=475±10 МПа и σв=530±10 МПа.

Пример 3

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)%Mg-(3,5-4,5)%Zn-(0,6-1,0)%Cu-(2-3)%Ni-(0,25-0,30)%Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13 мм.

Коррозионностойкий плакирующий сплав состава Al-(3,6-4,0)%Mg-(2,0-2,4)%Si-(0,25-0,35)%Zr получен по следующей технологии.

Первой операцией является изготовление слитков методом наполнительного литья в медную водоохлаждаемую изложницу. Температура расплава перед разливкой должна составлять не менее 750°С (скорость охлаждения не менее 15 К/с). Полученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует холодная прокатка с обжатием 50% до толщины 1 мм.

Перед сваркой все контактные поверхности тщательно обрабатываются химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 450±10°С с суммарным обжатием 70% и последующей холодной прокаткой с обжатием 80% до толщины 1 мм.

В листе, плакированном данным сплавом, после нагрева до температуры СПД, наблюдается нерекристаллизованная структура в базовом слое и ультрамелкозернистая структура в плакирующем слое (6-7 мкм) после нагрева до температуры СПД, что позволяет осуществлять сверхпластическую формовку листов. Полученный плакированный сверхпластичный алюминиевый лист имеет относительное удлинение 390±10% при температуре 440°С и скорости деформации 10-2 с-1. Механические свойства практически не снижаются после испытания на общую коррозию и составляют σт=485±10 МПа и σв=540±10 МПа.

Пример 4

Плиту высокопрочного сплава-основы с составом Al-(3,5-4,5)%Mg-(3,5-4,5)%Zn-(0,6-1,0)%Cu-(2-3)%Ni-(0,25-0,30)%Zr получают следующим образом: расплав с температуры 800°С заливают в водоохлаждаемую изложницу (скорость охлаждения не менее 15 К/с). Далее следует двухступенчатый гомогенизационный отжиг (440°С, 3-6 часов и 500°С, 3-4 часа). Горячую прокатку проводят при температуре 430°С до толщины 13 мм.

Коррозионностойкий плакирующий сплав состава Al-(4,8-5,3)%Zn-(4,8-5,3)%Са получен по следующей технологии.

Первой операцией является изготовление слитков методом наполнительного литья в медную водоохлаждаемую изложницу. Температура расплава перед разливкой должна составлять не менее 750°С (скорость охлаждения не менее 15 К/с). По лученные слитки подвергаются гомогенизационному отжигу при температуре 450°С в течение 4 ч и горячей прокатке с обжатием 70%, за которой следует прокатка с охлаждением с начальной температуры 450°С до 1 мм.

Перед сваркой все контактные поверхности тщательно обрабатываются химическими реактивами, в том числе: 40% водным раствором NaOH, 5% водным раствором азотной кислоты и раствором CCl4. Листы плакирующего сплава располагают на верхней и нижней поверхностях плиты. Полученный пакет подвергают горячей прокатке при температуре 450±10°С с суммарным обжатием 80% и последующей холодной прокаткой с обжатием 70% до толщины 1 мм.

В полученном слоистом листе наблюдается нерекристаллизованная структура в базовом слое и мелкозернистая структура в плакирующем слое (5-8 мкм) после нагрева до температуры СПД, что позволяет осуществлять сверхпластическую формовку листов. Полученный плакированный сверхпластичный алюминиевый лист имеет относительное удлинение 390±10% при температуре 440°С и скорости деформации 10-2 с-1. Механические свойства практически не снижаются после испытания на общую коррозию и составляют σт=500±10 МПа и σв=550±10 МПа.

Похожие патенты RU2637842C1

название год авторы номер документа
СВЕРХПЛАСТИЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2011
  • Портной Владимир Климович
  • Михайловская Анастасия Владимировна
  • Чурюмов Александр Юрьевич
  • Синагейкина Юлия Владимировна
  • Котов Антон Дмитриевич
RU2491365C2
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПЛАСТИЧНОГО ЛИСТА ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА 2010
  • Портной Владимир Кимович
  • Михайловская Анастасия Владимировна
RU2449047C1
Сплав системы Al-Mg-Zn для высокоскоростной сверхпластической формовки 2023
  • Михайловская Анастасия Владимировна
  • Кищик Анна Алексеевна
  • Кищик Михаил Сергеевич
RU2817627C1
Сверхпластичный сплав на основе системы Al-Mg-Si 2016
  • Портной Владимир Кимович
  • Михайловская Анастасия Владимировна
  • Котов Антон Дмитриевич
  • Мочуговский Андрей Геннадьевич
RU2631786C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЛИСТОВ ИЗ СПЛАВА СИСТЕМЫ АЛЮМИНИЙ-МАГНИЙ-МАРГАНЕЦ 2010
  • Портной Владимир Кимович
  • Михайловская Анастасия Владимировна
  • Левченко Виктор Семенович
RU2451105C1
Сплав системы Al-Mg с гетерогенной структурой для высокоскоростной сверхпластической формовки 2021
  • Михайловская Анастасия Владимировна
  • Кищик Анна Алексеевна
  • Кищик Михаил Сергеевич
  • Котов Антон Дмитриевич
RU2772479C1
Ультрамелкозернистые алюминиевые сплавы для высокопрочных изделий, изготовленных в условиях сверхпластичности, и способ получения изделий 2020
  • Валиев Руслан Зуфарович
  • Мурашкин Максим Юрьевич
  • Бобрук Елена Владимировна
RU2739926C1
СПОСОБ ПОЛУЧЕНИЯ СВЕРХПЛАСТИЧНОГО ЛИСТА ИЗ ВЫСОКОПРОЧНОГО АЛЮМИНИЕВОГО СПЛАВА И ИЗДЕЛИЕ, ПОЛУЧЕННОЕ ИЗ НЕГО 2004
  • Фридляндер И.Н.
  • Сенаторова О.Г.
  • Сидельников В.В.
  • Легошина С.Ф.
  • Сухих А.Ю.
RU2246555C1
ВЫСОКОПРОЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ С ДОБАВКОЙ КАЛЬЦИЯ 2012
  • Белов Николай Александрович
RU2478132C1
Латунь для сверхпластической формовки деталей с малой остаточной пористостью 2018
  • Портной Владимир Кимович
  • Михайловская Анастасия Владимировна
  • Яковцева Ольга Анатольевна
  • Медведева Светлана Вячеславна
RU2699423C1

Реферат патента 2017 года Способ получения сверхпластичного плакированного материала на основе алюминия

Изобретение может быть использовано для изготовления сверхпластичных слоистых листов из алюминиевого сплава с повышенной коррозионной стойкостью. Проводят химическую обработку последовательно 40%-ным раствором NaOH в воде, 5%-ным раствором HNO3 в воде и тетрахлорметаном контактных поверхностей высокопрочной плиты толщиной 13-13,5 мм, состоящей из сплава на основе алюминия, содержащего, мас. %: 3,5-4,5 цинка, 3,5-4,5 магния, 0,6-1,0 меди, 2,0-3,0 никеля, 0,25-0,3 циркония и плакирующих листов толщиной 1-1,1 мм из алюминиевого сплава. Размещают плакирующие листы на поверхностях высокопрочной плиты и осуществляют сварку высокопрочной плиты с плакирующими листами методом горячей прокатки при температуре 400-460°С с обжатием не менее 50% за первый проход и суммарным обжатием 70-80% с последующей холодной прокаткой на 70-80% до получения плакированного материала толщиной 1 мм. Разработанный слоистый материал обеспечивает получение коррозионностойких деталей с относительным удлинением более 300% при высокотемпературной деформации методом сверхпластической формовки, при этом полученные детали имеют высокий срок службы, что позволяет расширить область их применения. 4 пр.

Формула изобретения RU 2 637 842 C1

Способ получения сверхпластичного плакированного материала на основе алюминия, включающий получение высокопрочной плиты толщиной 13-13,5 мм, состоящей из сплава на основе алюминия, содержащего, мас.%: 3,5-4,5 цинка, 3,5-4,5 магния, 0,6-1,0 меди, 2,0-3,0 никеля, 0,25-0,3 циркония и плакирующих листов толщиной 1-1,1 мм из алюминиевого сплава, предварительную химическую обработку контактных поверхностей последовательно 40%-ным раствором NaOH в воде, 5%-ным раствором HNO3 в воде и тетрахлорметаном, размещение плакирующих листов на поверхностях высокопрочной плиты, сварку высокопрочной плиты с плакирующими листами методом горячей прокатки при температуре 400-460°С с обжатием не менее 50% за первый проход и суммарным обжатием 70-80% с последующей холодной прокаткой на 70-80% до получения плакированного материала толщиной 1 мм.

Документы, цитированные в отчете о поиске Патент 2017 года RU2637842C1

SU 720890 А1, 27.11.2004
СВЕРХПЛАСТИЧНЫЙ СПЛАВ НА ОСНОВЕ АЛЮМИНИЯ 2011
  • Портной Владимир Климович
  • Михайловская Анастасия Владимировна
  • Чурюмов Александр Юрьевич
  • Синагейкина Юлия Владимировна
  • Котов Антон Дмитриевич
RU2491365C2
RU 94031240 А1, 20.07.1996
СПОСОБ ПОЛУЧЕНИЯ ЛИСТОВ ИЗ АЛЮМИНИЯ И НИЗКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ С УТОЛЩЕННОЙ ПЛАКИРОВКОЙ ИЗ ВЫСОКОПРОЧНЫХ АЛЮМИНИЕВЫХ СПЛАВОВ 2004
  • Лукашкин Н.Д.
  • Лукашкин А.Н.
RU2263014C1
US 4618382 A, 21.10.1986.

RU 2 637 842 C1

Авторы

Портной Владимир Кимович

Михайловская Анастасия Владимировна

Котов Антон Дмитриевич

Мочуговский Андрей Геннадьевич

Даты

2017-12-07Публикация

2016-11-11Подача