Способ разделения изотопов урана Российский патент 2017 года по МПК C01G43/06 B01D59/00 

Описание патента на изобретение RU2638384C1

Изобретение относится к неорганической химии и физике разделения веществ, в частности к технологиям производства фторидных соединений урана и разделению его изотопов.

В настоящее время в процессе вовлечения в ядерный топливный цикл урана, регенерированного из облученного урана, имеются неоднократные случаи превышения содержания гамма-активного изотопа 232U в обогащаемом по изотопу 235U гексафториде урана, что неприемлемо в соответствии с отечественными и зарубежными стандартами. Очистку гексафторида урана от изотопа 232U в силу его незначительного содержания невыгодно осуществлять традиционными способами, такими как диффузионный (эффузионный) и центрифужный, вследствие их значительной энерго- и материалоемкости. Кроме того, легчайший изотоп урана будет концентрироваться в обогащаемой по изотопу 235U фракции, являющейся целевым продуктом обогащения, что предопределяет дополнительные операции по их разделению. Существует также громадное количество так называемого «отвального» или обедненного гексафторида урана, находящегося на длительном хранении и содержащего в своем составе до 0,1-0,3 мас. % изотопа 235U, переработка которого с целью более глубокого извлечения этого изотопа традиционными методами часто экономически нецелесообразна.

Наиболее близким по технической сути к предлагаемому изобретению является способ разделения изотопов урана путем пропускания газообразного гексафторида урана через пористую перегородку, в котором реализуется явление газовой эффузии или диффузии Кнудсена. Коэффициент обогащения практически составляет величину, равную 1,0036 (теоретический 1,0042) [Бенедикт М., Пигфорд Т. «Химическая технология ядерных материалов». Пер. с англ. - М.: Изд-во ГУ по использованию атомной энергии, 1960 г., с. 487]. Недостатками способа являются громадные энерго- и материалозатраты и сложное аппаратурное оформление процесса разделения. Кроме того, коэффициент разделения изотопов урана достаточно низок, что предопределяет многократное повторение единичной стадии разделения с соответствующим аппаратурным оформлением, т.е. создание каскада однотипных разделительных устройств, состоящего из сотен и тысяч разделительных ячеек.

Техническим результатом изобретения является снижение материалоемкости и существенное упрощение аппаратурного парка для осуществления способа при увеличении коэффициента разделения изотопов урана, а также существенное увеличение производительности процесса.

Технический результат достигается тем, что гексафторид урана контактируют с фторидом натрия до получения октафтороураната или гептафтороураната натрия (Na2UF8 и NaUF7 соответственно) или их смеси в любом соотношении с последующим термическим разложением солей при давлении не выше величины равновесного давления паров гексафторида урана над соответствующими солями или их смесями при определенной температуре. Октафтороуранат натрия разлагают при температуре 200-400°С, гептафтороуранат натрия разлагают при температуре 80-200°С, смесь октафтороураната натрия и гептафтороураната натрия разлагают при температуре 50-400°С. Кроме того, давление паров гексафторида урана при терморазложении смеси солей не превышает равновесного давления над более термически устойчивой солью.

Необходимо отметить, что температуру разложения твердых комплексных солей следует рассматривать идентичной температуре кипения, при которой давление пара над солями достигает 760 мм рт.ст. Согласно работе [Katz S. Inorg. Chem., 1966, v. 5, No 4, pp. 666-668] такое давление над октафтороуранатом натрия достигается при 656 K, полученное экстраполированием экспериментальных данных до температуры 598 K, что, в свою очередь, накладывает погрешность на точное значение температуры разложения, равной 656 K. Согласно работе [Katz S. Inorg. Chem., 1964, v. 3, No 11, pp. 1598-1600] температура разложения гептафтороураната натрия равна 478 K, которая также получена экстраполяцией. В работе [Громов О.Б. В кн. «ВНИИХТ- 65 лет» - М.: ООО «Винпресс», 2016, сс. 274-277] рекомендуется считать температуру разложения гептафтороураната натрия, равную 457 K. Кроме того, заметное разложение солей для реализации технологического процесса, т.е. давление пара над солью должно быть не менее 20-30 мм рт.ст., температура составляет 80°С и 200°С для гепта- и октафтороураната натрия.

Пример 1. Гексафторид урана массой 23,3 г, содержащий 0,367 мас. % изотопа 235U, контактируют с 6,5 г фторида натрия до образования соединения с брутто-формулой UF6⋅2,3 NaF, масса которого составила 28,8 г.

Полученный фтороуранат натрия подвергли термическому разложению при температуре 200°С с постепенным повышением температуры до 350°С. Давление в реакторе поддерживали в пределах 20±10 мм рт.ст. Цикл образования фтороураната натрия и его разложения в указанных условиях повторили 9 раз. После завершения 10-го цикла было получено 16,5 г UF6, содержащего 0,409 мас. % изотопа 235U. Выход обогащенного гексафторида урана в целевую фракцию составил 70,8%. Рассчитанный коэффициент обогащения изотопом 235U за один цикл составил 1,0134.

Пример 2. Гексафторид урана по условиям примера 1, контактировали с NaF до образования NaUF7. Полученную соль разложили при температуре (100±10)°С. Давление гексафторида урана в реакторе при разложении соли равнялось (100±20) мм рт.ст., величина которого соответствовала равновесному давлению гексафторида урана над гептафтороуранатом натрия в интервале указанных температур. Десорбат содержал 0,374 мас. % изотопа 235U. Коэффициент обогащения составил 1,0191.

Пример 3. По условиям примера 2, за исключением того, что при термическом разложении соли производили постоянную откачку реактора до давления не выше 0,1 мм рт.ст. В этих условиях был достигнут коэффициент разделения изотопов 238U и 235U в элементарном цикле, равный 1,0163.

Пример 4.

5 г активированного NaF контактировали с UF6, содержащего 0,365 мас. % изотопа 235U, до образования соединения с брутто-формулой UF6⋅2,06 NaF (фактически получена смесь фтороуранатов натрия). Полученную соль разлагали при температуре 275-300°С и давлении UF6 над солью, равном 50-90 мм рт.ст. В процессе разложения соли отбирали фракции десорбата, которые конденсировали с помощью жидкого азота в предварительно взвешенные пробоотборники. Масса фракций UF6 оказалась равной 1,90 г, 6,19 г и 11,13 г. Содержание изотопа 235U в каждой фракции составило соответственно 0,382, 0,374 и 0,372 мас. %. Соответствующие коэффициенты обогащения по изотопу 235U оказались равны 1,0466, 1,0247 и 1,0055. Расчет средневзвешенного коэффициента обогащения по всей массе десорбата дает величину, равную 1,016, т.е. величину коэффициента разделения, близкую к величинам коэффициентов разделения по условиям примеров 1-3.

Пример 5. Гексафторид урана, содержащий (мас. %): 238U - 97,02, 235U - 2,98, 232U - 1⋅10-7, контактировали с активированным фторидом натрия до образования NaUF7. Полученную соль разлагали при (150±25)°С и произвели отбор 46 мас. % десорбата. Состав UF6 в этой фракции равен (мас. %): 238U - 96,71, 235U - 3,29, 232U - 1,19⋅10-7, а соответствующие коэффициенты обогащения составили: 0,997; 1,104 и 1,190.

Для осуществления способа не требуется разработка сложного технологического оборудования и аппаратов, т.к. фактически для реализации способа можно применять стандартные сорбционные колонны с нагревателями.

Похожие патенты RU2638384C1

название год авторы номер документа
СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВОЙ СМЕСИ UF-BrF-IF НА КОМПОНЕНТЫ 2002
  • Амелина Г.Н.
  • Гриднев В.Г.
  • Жерин И.И.
  • Малый Е.Н.
  • Мариненко Е.П.
  • Прусаков В.Н.
  • Рудников А.И.
  • Утробин Д.В.
  • Торгунаков Ю.Б.
RU2221749C2
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРИДА НИЗКООБОГАЩЕННОГО УРАНА ИЗ ОРУЖЕЙНОГО ВЫСОКООБОГАЩЕННОГО УРАНА 2005
  • Водолазских Виктор Васильевич
  • Журин Владимир Анатольевич
  • Ледовских Александр Константинович
  • Лазарчук Валерий Владимирович
  • Козлов Владимир Андреевич
  • Мазин Владимир Ильич
  • Стерхов Максим Иванович
  • Шидловский Владимир Владиславович
  • Щелканов Владимир Иванович
RU2292303C2
СПОСОБ ИЗОТОПНОГО ВОССТАНОВЛЕНИЯ РЕГЕНЕРИРОВАННОГО УРАНА 2009
  • Журин Владимир Анатольевич
  • Водолазских Виктор Васильевич
  • Щелканов Владимир Иванович
  • Палкин Валерий Анатольевич
  • Глухов Николай Петрович
RU2399971C1
СПОСОБ КОНВЕРСИИ ГЕКСАФТОРИДА УРАНА 1998
  • Мазин В.И.
RU2203225C2
СПОСОБ ИЗОТОПНОГО ВОССТАНОВЛЕНИЯ РЕГЕНЕРИРОВАННОГО УРАНА 2002
  • Власов А.А.
  • Водолазских В.В.
  • Мазин В.И.
  • Никипелов Б.В.
  • Никипелов В.Б.
  • Скачков Ю.Я.
  • Стерхов М.И.
  • Шидловский В.В.
  • Щелканов В.И.
RU2236053C2
СПОСОБ ИЗОТОПНОГО ВОССТАНОВЛЕНИЯ РЕГЕНЕРИРОВАННОГО УРАНА 2002
  • Власов А.А.
  • Водолазских В.В.
  • Гриднев В.Г.
  • Козлов В.А.
  • Леонтьев Я.П.
  • Мазин В.И.
  • Никипелов Б.В.
  • Никипелов В.Б.
  • Скачков Ю.Я.
  • Стерхов М.И.
  • Шидловский В.В.
  • Щелканов В.И.
RU2242812C2
СПОСОБ ПЕРЕРАБОТКИ ЗАГРЯЗНЕННОГО УРАНОВОГО СЫРЬЯ 2008
  • Журин Владимир Анатольевич
  • Водолазских Виктор Васильевич
  • Щелканов Владимир Иванович
  • Палкин Валерий Анатольевич
  • Глухов Николай Петрович
RU2377674C1
СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА ИЗ СОРБЕНТА ФТОРИДА НАТРИЯ 2009
  • Громов Олег Борисович
  • Шаталов Валентин Васильевич
  • Вдовиченко Валентина Дмитриевна
  • Волоснев Александр Васильевич
RU2422366C1
СПОСОБ КОНВЕРСИИ ОТВАЛЬНОГО ГЕКСАФТОРИДА УРАНА В МЕТАЛЛИЧЕСКИЙ УРАН 2014
  • Брус Иван Дмитриевич
  • Тураев Николай Степанович
  • Колпаков Геннадий Николаевич
  • Непеин Дмитрий Сергеевич
RU2562288C1
СПОСОБ ПЕРЕРАБОТКИ СМЕСИ ГЕКСАФТОРИДА УРАНА С ФТОРИСТЫМ ВОДОРОДОМ 1999
  • Акишин В.С.
  • Бахматова Л.Г.
  • Лазарчук В.В.
  • Малый Е.Н.
  • Мариненко Е.П.
  • Матвеев А.А.
  • Рудников А.И.
  • Хохлов В.А.
  • Кораблев А.М.
RU2159742C1

Реферат патента 2017 года Способ разделения изотопов урана

Изобретение относится к неорганической химии и физике разделения веществ, в частности к технологии производства фторидных соединений урана и разделению его изотопов. Способ разделения изотопов урана включает контактирование гексафторида урана и фторида натрия до получения фтороураната натрия или фтороуранатов натрия с последующим термическим разложением солей при давлении не выше величины равновесного давления паров гексафторида урана над соответствующими солями или их смесями при температуре разложения. Изобретение обеспечивает снижение материалоемкости и упрощение аппаратурного парка для осуществления способа, увеличение коэффициента разделения изотопов урана и увеличение производительности процесса. 7 з.п. ф-лы, 5 пр.

Формула изобретения RU 2 638 384 C1

1. Способ разделения изотопов урана, отличающийся тем, что гексафторид урана контактирует с фторидом натрия до получения фтороураната натрия или фтороуранатов натрия с последующим термическим разложением солей при давлении не выше величины равновесного давления паров гексафторида урана над соответствующими солями или их смесями при определенной температуре.

2. Способ по п. 1, отличающийся тем, что гексафторид урана контактирует с фторидом натрия до образования октафтороураната натрия.

3. Способ по п. 1, отличающийся тем, что гексафторид урана контактирует с фторидом натрия до образования гептафтороураната натрия.

4. Способ по п. 1, отличающийся тем, что гексафторид урана контактирует с фторидом натрия до образования смеси октафтороураната натрия и гептафтороураната натрия в любом соотношении.

5. Способ по п. 1 или 2, отличающийся тем, что октафтороуранат натрия разлагают при температуре 200-400°C.

6. Способ по п. 1 или 3, отличающийся тем, что гептафтороуранат натрия разлагают при температуре 80-200°C.

7. Способ по п. 1 или 4, отличающийся тем, что смесь октафтороураната натрия и гептафтороураната натрия разлагают при температуре 80-400°C.

8. Способ по п. 1 или 7, отличающийся тем, что давление паров гексафторида урана при терморазложении смеси солей не превышает равновесного давления над более термически устойчивой солью.

Документы, цитированные в отчете о поиске Патент 2017 года RU2638384C1

СПОСОБ РАЗДЕЛЕНИЯ ФТОРСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ 2006
  • Громов Олег Борисович
  • Михеев Петр Иванович
  • Стерхов Михаил Иванович
  • Торгунаков Юрий Борисович
RU2328335C1
СПОСОБ ВЫДЕЛЕНИЯ ГЕКСАФТОРИДА УРАНА ИЗ ЕГО СМЕСИ С ФТОРИДОМ ВОДОРОДА 2004
  • Рудников Андрей Иванович
  • Мариненко Евгений Петрович
  • Хохлов Владимир Александрович
  • Лазарчук Валерий Владимирович
  • Ледовских Александр Константинович
  • Матвеев Александр Анатольевич
  • Котов Сергей Алексеевич
  • Ридецкий Сергей Владимирович
RU2273605C2
СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВОЙ СМЕСИ UF-BrF-IF НА КОМПОНЕНТЫ 2002
  • Амелина Г.Н.
  • Гриднев В.Г.
  • Жерин И.И.
  • Малый Е.Н.
  • Мариненко Е.П.
  • Прусаков В.Н.
  • Рудников А.И.
  • Утробин Д.В.
  • Торгунаков Ю.Б.
RU2221749C2

RU 2 638 384 C1

Авторы

Громов Олег Борисович

Даты

2017-12-13Публикация

2016-11-18Подача