Изобретение относится к неорганической химии и физике разделения веществ, в частности к технологиям производства фторидных соединений урана и разделению его изотопов.
В настоящее время в процессе вовлечения в ядерный топливный цикл урана, регенерированного из облученного урана, имеются неоднократные случаи превышения содержания гамма-активного изотопа 232U в обогащаемом по изотопу 235U гексафториде урана, что неприемлемо в соответствии с отечественными и зарубежными стандартами. Очистку гексафторида урана от изотопа 232U в силу его незначительного содержания невыгодно осуществлять традиционными способами, такими как диффузионный (эффузионный) и центрифужный, вследствие их значительной энерго- и материалоемкости. Кроме того, легчайший изотоп урана будет концентрироваться в обогащаемой по изотопу 235U фракции, являющейся целевым продуктом обогащения, что предопределяет дополнительные операции по их разделению. Существует также громадное количество так называемого «отвального» или обедненного гексафторида урана, находящегося на длительном хранении и содержащего в своем составе до 0,1-0,3 мас. % изотопа 235U, переработка которого с целью более глубокого извлечения этого изотопа традиционными методами часто экономически нецелесообразна.
Наиболее близким по технической сути к предлагаемому изобретению является способ разделения изотопов урана путем пропускания газообразного гексафторида урана через пористую перегородку, в котором реализуется явление газовой эффузии или диффузии Кнудсена. Коэффициент обогащения практически составляет величину, равную 1,0036 (теоретический 1,0042) [Бенедикт М., Пигфорд Т. «Химическая технология ядерных материалов». Пер. с англ. - М.: Изд-во ГУ по использованию атомной энергии, 1960 г., с. 487]. Недостатками способа являются громадные энерго- и материалозатраты и сложное аппаратурное оформление процесса разделения. Кроме того, коэффициент разделения изотопов урана достаточно низок, что предопределяет многократное повторение единичной стадии разделения с соответствующим аппаратурным оформлением, т.е. создание каскада однотипных разделительных устройств, состоящего из сотен и тысяч разделительных ячеек.
Техническим результатом изобретения является снижение материалоемкости и существенное упрощение аппаратурного парка для осуществления способа при увеличении коэффициента разделения изотопов урана, а также существенное увеличение производительности процесса.
Технический результат достигается тем, что гексафторид урана контактируют с фторидом натрия до получения октафтороураната или гептафтороураната натрия (Na2UF8 и NaUF7 соответственно) или их смеси в любом соотношении с последующим термическим разложением солей при давлении не выше величины равновесного давления паров гексафторида урана над соответствующими солями или их смесями при определенной температуре. Октафтороуранат натрия разлагают при температуре 200-400°С, гептафтороуранат натрия разлагают при температуре 80-200°С, смесь октафтороураната натрия и гептафтороураната натрия разлагают при температуре 50-400°С. Кроме того, давление паров гексафторида урана при терморазложении смеси солей не превышает равновесного давления над более термически устойчивой солью.
Необходимо отметить, что температуру разложения твердых комплексных солей следует рассматривать идентичной температуре кипения, при которой давление пара над солями достигает 760 мм рт.ст. Согласно работе [Katz S. Inorg. Chem., 1966, v. 5, No 4, pp. 666-668] такое давление над октафтороуранатом натрия достигается при 656 K, полученное экстраполированием экспериментальных данных до температуры 598 K, что, в свою очередь, накладывает погрешность на точное значение температуры разложения, равной 656 K. Согласно работе [Katz S. Inorg. Chem., 1964, v. 3, No 11, pp. 1598-1600] температура разложения гептафтороураната натрия равна 478 K, которая также получена экстраполяцией. В работе [Громов О.Б. В кн. «ВНИИХТ- 65 лет» - М.: ООО «Винпресс», 2016, сс. 274-277] рекомендуется считать температуру разложения гептафтороураната натрия, равную 457 K. Кроме того, заметное разложение солей для реализации технологического процесса, т.е. давление пара над солью должно быть не менее 20-30 мм рт.ст., температура составляет 80°С и 200°С для гепта- и октафтороураната натрия.
Пример 1. Гексафторид урана массой 23,3 г, содержащий 0,367 мас. % изотопа 235U, контактируют с 6,5 г фторида натрия до образования соединения с брутто-формулой UF6⋅2,3 NaF, масса которого составила 28,8 г.
Полученный фтороуранат натрия подвергли термическому разложению при температуре 200°С с постепенным повышением температуры до 350°С. Давление в реакторе поддерживали в пределах 20±10 мм рт.ст. Цикл образования фтороураната натрия и его разложения в указанных условиях повторили 9 раз. После завершения 10-го цикла было получено 16,5 г UF6, содержащего 0,409 мас. % изотопа 235U. Выход обогащенного гексафторида урана в целевую фракцию составил 70,8%. Рассчитанный коэффициент обогащения изотопом 235U за один цикл составил 1,0134.
Пример 2. Гексафторид урана по условиям примера 1, контактировали с NaF до образования NaUF7. Полученную соль разложили при температуре (100±10)°С. Давление гексафторида урана в реакторе при разложении соли равнялось (100±20) мм рт.ст., величина которого соответствовала равновесному давлению гексафторида урана над гептафтороуранатом натрия в интервале указанных температур. Десорбат содержал 0,374 мас. % изотопа 235U. Коэффициент обогащения составил 1,0191.
Пример 3. По условиям примера 2, за исключением того, что при термическом разложении соли производили постоянную откачку реактора до давления не выше 0,1 мм рт.ст. В этих условиях был достигнут коэффициент разделения изотопов 238U и 235U в элементарном цикле, равный 1,0163.
Пример 4.
5 г активированного NaF контактировали с UF6, содержащего 0,365 мас. % изотопа 235U, до образования соединения с брутто-формулой UF6⋅2,06 NaF (фактически получена смесь фтороуранатов натрия). Полученную соль разлагали при температуре 275-300°С и давлении UF6 над солью, равном 50-90 мм рт.ст. В процессе разложения соли отбирали фракции десорбата, которые конденсировали с помощью жидкого азота в предварительно взвешенные пробоотборники. Масса фракций UF6 оказалась равной 1,90 г, 6,19 г и 11,13 г. Содержание изотопа 235U в каждой фракции составило соответственно 0,382, 0,374 и 0,372 мас. %. Соответствующие коэффициенты обогащения по изотопу 235U оказались равны 1,0466, 1,0247 и 1,0055. Расчет средневзвешенного коэффициента обогащения по всей массе десорбата дает величину, равную 1,016, т.е. величину коэффициента разделения, близкую к величинам коэффициентов разделения по условиям примеров 1-3.
Пример 5. Гексафторид урана, содержащий (мас. %): 238U - 97,02, 235U - 2,98, 232U - 1⋅10-7, контактировали с активированным фторидом натрия до образования NaUF7. Полученную соль разлагали при (150±25)°С и произвели отбор 46 мас. % десорбата. Состав UF6 в этой фракции равен (мас. %): 238U - 96,71, 235U - 3,29, 232U - 1,19⋅10-7, а соответствующие коэффициенты обогащения составили: 0,997; 1,104 и 1,190.
Для осуществления способа не требуется разработка сложного технологического оборудования и аппаратов, т.к. фактически для реализации способа можно применять стандартные сорбционные колонны с нагревателями.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВОЙ СМЕСИ UF-BrF-IF НА КОМПОНЕНТЫ | 2002 |
|
RU2221749C2 |
СПОСОБ ПОЛУЧЕНИЯ ГЕКСАФТОРИДА НИЗКООБОГАЩЕННОГО УРАНА ИЗ ОРУЖЕЙНОГО ВЫСОКООБОГАЩЕННОГО УРАНА | 2005 |
|
RU2292303C2 |
СПОСОБ ИЗОТОПНОГО ВОССТАНОВЛЕНИЯ РЕГЕНЕРИРОВАННОГО УРАНА | 2009 |
|
RU2399971C1 |
СПОСОБ КОНВЕРСИИ ГЕКСАФТОРИДА УРАНА | 1998 |
|
RU2203225C2 |
СПОСОБ ИЗОТОПНОГО ВОССТАНОВЛЕНИЯ РЕГЕНЕРИРОВАННОГО УРАНА | 2002 |
|
RU2236053C2 |
СПОСОБ ИЗОТОПНОГО ВОССТАНОВЛЕНИЯ РЕГЕНЕРИРОВАННОГО УРАНА | 2002 |
|
RU2242812C2 |
СПОСОБ ПЕРЕРАБОТКИ ЗАГРЯЗНЕННОГО УРАНОВОГО СЫРЬЯ | 2008 |
|
RU2377674C1 |
СПОСОБ ИЗВЛЕЧЕНИЯ УРАНА ИЗ СОРБЕНТА ФТОРИДА НАТРИЯ | 2009 |
|
RU2422366C1 |
СПОСОБ КОНВЕРСИИ ОТВАЛЬНОГО ГЕКСАФТОРИДА УРАНА В МЕТАЛЛИЧЕСКИЙ УРАН | 2014 |
|
RU2562288C1 |
СПОСОБ ПЕРЕРАБОТКИ СМЕСИ ГЕКСАФТОРИДА УРАНА С ФТОРИСТЫМ ВОДОРОДОМ | 1999 |
|
RU2159742C1 |
Изобретение относится к неорганической химии и физике разделения веществ, в частности к технологии производства фторидных соединений урана и разделению его изотопов. Способ разделения изотопов урана включает контактирование гексафторида урана и фторида натрия до получения фтороураната натрия или фтороуранатов натрия с последующим термическим разложением солей при давлении не выше величины равновесного давления паров гексафторида урана над соответствующими солями или их смесями при температуре разложения. Изобретение обеспечивает снижение материалоемкости и упрощение аппаратурного парка для осуществления способа, увеличение коэффициента разделения изотопов урана и увеличение производительности процесса. 7 з.п. ф-лы, 5 пр.
1. Способ разделения изотопов урана, отличающийся тем, что гексафторид урана контактирует с фторидом натрия до получения фтороураната натрия или фтороуранатов натрия с последующим термическим разложением солей при давлении не выше величины равновесного давления паров гексафторида урана над соответствующими солями или их смесями при определенной температуре.
2. Способ по п. 1, отличающийся тем, что гексафторид урана контактирует с фторидом натрия до образования октафтороураната натрия.
3. Способ по п. 1, отличающийся тем, что гексафторид урана контактирует с фторидом натрия до образования гептафтороураната натрия.
4. Способ по п. 1, отличающийся тем, что гексафторид урана контактирует с фторидом натрия до образования смеси октафтороураната натрия и гептафтороураната натрия в любом соотношении.
5. Способ по п. 1 или 2, отличающийся тем, что октафтороуранат натрия разлагают при температуре 200-400°C.
6. Способ по п. 1 или 3, отличающийся тем, что гептафтороуранат натрия разлагают при температуре 80-200°C.
7. Способ по п. 1 или 4, отличающийся тем, что смесь октафтороураната натрия и гептафтороураната натрия разлагают при температуре 80-400°C.
8. Способ по п. 1 или 7, отличающийся тем, что давление паров гексафторида урана при терморазложении смеси солей не превышает равновесного давления над более термически устойчивой солью.
СПОСОБ РАЗДЕЛЕНИЯ ФТОРСОДЕРЖАЩИХ ГАЗОВЫХ СМЕСЕЙ | 2006 |
|
RU2328335C1 |
СПОСОБ ВЫДЕЛЕНИЯ ГЕКСАФТОРИДА УРАНА ИЗ ЕГО СМЕСИ С ФТОРИДОМ ВОДОРОДА | 2004 |
|
RU2273605C2 |
СПОСОБ РАЗДЕЛЕНИЯ ГАЗОВОЙ СМЕСИ UF-BrF-IF НА КОМПОНЕНТЫ | 2002 |
|
RU2221749C2 |
Авторы
Даты
2017-12-13—Публикация
2016-11-18—Подача