Жидкостный ракетный двигатель с беспоршневым пневмонасосным агрегатом Российский патент 2017 года по МПК F02K9/42 

Описание патента на изобретение RU2638705C1

Область техники

Решение относится к области ракетной техники и может быть использовано при разработке ракеты-носителя (РН) для легких нагрузок.

Уровень техники

В ракетной технике топливо в ЖРД (жидкостный ракетный двигатель) подается в камеру сгорания обычно одним из двух способов.

1. С помощью турбонасосного агрегата (ТНА). ТНА качает топливо из баков в камеру, при этом обеспечивает повышенное давление компонентов топлива в камере по сравнению с давлением в баках. ТНА позволяет сделать стенки баков тоньше и легче. По этим причинам двигатель с ТНА имеет высокую эффективность по сравнению другими видами подачи топлива. Но в то же время ТНА усложняет систему и снижает ее надежность. Производство ЖРД с ТНА требует больших трудозатрат, что существенно увеличивает себестоимость. Стоит отметить, что ТНА - устройство инерционного действия, в которой вращающееся колесо придает кинетическую энергию жидкости, которая затем выходной улиткой преобразуется в потенциальную энергию (статическое давление).

2. Вытеснением. В таком случае на борту ракеты имеется баллон повышенного давления, газ из которого вытесняет компоненты топлива из баков в камеру. В таком случае давление в камере ниже давления в баках, а давление в баках ниже давления в баллоне с вытесняющим газом (баллон наддува). Чтобы выдерживать высокое давление, стенки баллона наддува и баков с топливом должны быть достаточно толстыми, что одновременно существенно увеличивает вес баллона и ракеты в целом. Высокий вес баллонов ограничивает максимальное давление в системе. Обычно в ЖРД с ТНА давление всегда выше. Преимуществом ЖРД с вытеснительной подачей топлива является высокая надежность и сравнительно низкие трудозатраты при производстве.

В ракетной технике периодически пытаются применить альтернативные типы подачи топлива (например, электронасос, поршневой насос). Одна из таких альтернативных технологий - беспоршневой пневмонасосный агрегат (ПНА). Он совмещает достоинства ТНА (легкие баки, высокое давление в камере) с достоинствами вытеснительной системы (простота, надежность, дешевизна).

Беспоршневой ПНА состоит из двух (или большего числа) емкостей высокого давления, которые работают поочередно (Pistonless Pumps for Reliable, High Performance Propulsion Systems, http://www-rohan.sdsu.edu/~sharring/Pistonless_pump_for_CEV.pdf). В первом такте в первой емкости давление вытесняющего газа низкое, поэтому она наполняется компонентом топлива из большого бака, а во втором такте - в этой емкости давление вытесняющего газа высокое, и он вытесняет компонент топлива в двигатель. Вторая емкость работает в противофазе. Беспоршневой ПНА является машиной объемного действия (сродни обычному поршневому насосу), но в нем нет поршней и, вообще, движущихся элементов кроме клапанов.

Из уровня техники известен беспоршневой ПНА, созданный компанией Flometrics, раскрытый в заявке на патента США US 20090257888 А1, опубликованной 15 октября 2009 года. Во время испытания на стенде данный ПНА подавал топливо в ЖРД. Особенностью ПНА, описанного Flometrics, является использование для наддува жидкого/газообразного гелия или азота.

В качестве прототипа настоящего решения выбирается жидкостный ракетный двигатель, описанный в патенте РФ RU 2158838, опубликованном в 10.11.2000. В документе описан жидкостный ракетный двигатель, который включает две камеры, закрепленные на раме, прикрепленный к раме ТНА, имеющий турбину, насосы окислителя и горючего, трубопроводы подачи окислителя и горючего в газогенератор и камеры двигателя. Изобретение позволяет улучшить использование пространства двигательного отсека ракеты, упростить процесс сборки двигателя, уменьшить осевой габарит двигателя и осевой габарит и массу ракетоносителя.

К недостаткам изобретения относится использование ТНА, что усложняет систему и снижает ее надежность. Производство ЖРД с ТНА требует больших трудозатрат, что существенно увеличивает себестоимость.

Техническая задача и технический результат

Технической задачей является уменьшение массы ЖРД и повышение его эффективности. Техническим результатом является также упрощение конструкции ЖРД.

Решение

Для решения поставленной задачи предлагается жидкостный ракетный двигатель, включающий камеры сгорания, четыре пневмонасосных агрегата для подачи топлива и окислителя, бак с гелием высокого давления, бак с жидким метаном, отличающийся тем, что каждый пневмонасосный агрегат содержит два выхода для отвода газообразной и жидкой компоненты, причем газообразные компоненты метана, кислорода отводятся к рулевым камерам сгорания для последующего дожигания. Все элементы ЖРД крепятся к раме и представляют собой связанную жестко конструкцию.

Описание чертежей

Сущность решения поясняется фиг. 1, на которой приведена принципиальная схема ЖРД с ПНА с дожиганием газов наддува. Введены следующие обозначения

1 - бак жидкого азота;

2 - вентиль;

3 - обратный клапан;

4 - бак гелия высокого давления;

5 - ПНА-1;

6, 7 - редукционные клапаны;

8 - ПНА-2;

9 - бак горючего;

10 - бак окислителя;

11 - газификатор жидкого метана;

12 - ПНА-Г;

13 - ПНА-О;

14 - газификатор жидкого кислорода;

15, 16 - демпферы;

17 - камера сгорания;

18, 19, 20, 21 - рулевые камеры сгорания.

Детальное описание решения

С одной стороны, ТНА являются сложными в разработке, доводке, изготовлении и использовании тепловыми машинами, часто работающими в экстремальных условиях (высокие температуры, чрезвычайно высокие давления (свыше 500 атмосфер в ТНА РД-170 и ему подобных), агрессивная среда (окислительный газ), предельные механические нагрузки (частота вращения свыше 100000 об/мин), вибрации и другие факторы ракетного полета). Стоимость ТНА составляет до стоимости ЖРД и также примерно отказов ЖРД приходятся на ТНА.

С другой стороны, использование вытеснительной подачи приводит к большой массе баков, содержащих топливо под давлением, превышающим давление в камере сгорания ЖРД, большой массе вытесняющего газа, который требует для размещения баллонов высокого давления, также имеющих большую массу, и уменьшает достижимый удельный импульс ЖРД, особенно для первых ступеней, работающих при наружном давлении, отличном от нуля.

Пневмонасосный агрегат позволит получить давление в камере ЖРД больше, чем при вытеснительной подаче, а массу баков - меньше, чем при вытеснительной подаче. Таким образом, по техническим характеристикам ПНА эффективнее вытеснительной подачи. При этом он останется менее эффективным технически, чем ТНА, однако дешевле, надежнее и быстрее в отработке, чем ТНА. Таким образом, ПНА заполняет важную нишу - он эффективнее вытеснительной системы, но дешевле, проще и надежнее ТНА.

Однако применение двух беспоршневых ПНА Flometrics (один для горючего, а другой для окислителя) для подачи горючего и окислителя в камеру ЖРД будет недостаточно эффективным для использования в космической ракете по двум причинам.

Во-первых, баки с жидким/газообразным гелием и/или азотом будут слишком велики.

Во-вторых, для увеличения эффективности системы логично использовать отработанный в ПНА гелий/азот в рулевых камерах сгорания ЖРД. В отличие от основной камеры сгорания ЖРД они не толкают ракету вверх, а управляют ее ориентацией. Если изменять ориентацию не нужно, то отработанные газы стравливаются одновременно через все четыре камеры. В некоторых ракетах рулевые камеры расположены не строго перпендикулярно продольной оси ракеты, а немного под углом, причем сопла направлены в ту же сторону, что и у основной. В таком случае одновременная работа всех четырех рулевых камер поможет разгону ракеты. Однако и гелий, и азот химически инертны, поэтому их горение в рулевых камерах невозможно, а следовательно, - эффективность мала.

Если же в качестве горючего используется жидкие водород или керосин, а в качестве окислителя - жидкий кислород (что перекрывает большинство используемых в ЖРД топливных пар), то можно существенно оптимизировать конструкцию. Для этого бак окислителя надо наддувать кислородом, а бак горючего - метаном.

Принципиальное устройство с беспоршневыми ПНА с дожиганием газов наддува показано на фиг. 1.

Устройство состоит из бака жидкого азота, газификатора жидкого метана, газификатора жидкого кислорода, бака высокого давления с гелием на 300 атм, четырех беспоршневых ПНА, а также соединительных трубок и ряда вспомогательных элементов.

Каждый ПНА (аналогичный описанному в документе US 20090257888 А1) имеет два входа и два выхода. По сути каждый ПНА работает как насос. На один вход подается рабочий газ высокого давления, на другой вход - жидкость низкого давления, в первый выход - отработанный газ низкого давления, а во второй выход - жидкость высокого давления.

Опишем работу агрегатов.

ПНА-1. На входы подается - гелий высокого давления, жидкий метан. Выходы - гелий низкого давления, жидкий метан.

Далее жидкий метан с ПНА-1 идет в газификатор, где превращается в газообразный метан высокого давления, который поступает на ПНА-Г. Гелий низкого давления идет на наддув бака с жидким метаном. Для того чтобы вся система стартовала, первоначально наддув бака жидкого метана осуществляется гелием высокого давления, для чего открывается вентиль 2. Как только ПНА-1 начинает работу, вентиль 2 закрывается, в результате чего гелий высокого давления перестает поступать в бак жидкого метана и продолжает идти только напрямую в ПНА-1, а бак жидкого метана продолжает заполняться гелием низкого давления, выходящим из ПНА-1.

ПНА-Г. На входы подается - газообразный метан высокого давления, жидкое горючее из бака горючего. Выходы - газообразный метан низкого давления, горючее под высоким давлением.

Далее газообразный метан идет на рулевые двигатели и на наддув бака горючего, а горючее - непосредственно в камеру ЖРД.

Далее рассмотрим наддув окислителя (жидкий кислород).

ПНА-2. На входы подается - гелий высокого давления из гелиевого бака высокого давления, окислитель из бака окислителя. Выходы - газообразный гелий низкого давления, жидкий окислитель.

Гелий низкого давления из ПНА-2 затем наддувает бак окислителя. Жидкий окислитель после ПНА-2 поступает в газификатор, где превращается в газообразный кислород высокого давления.

ПНА-О. На входы подается - газообразный кислород высокого давления, жидкий кислород из бака окислителя. Выходы - газообразный кислород низкого давления, жидкий кислород высокого давления.

Жидкий кислород далее поступает в камеру ЖРД. Газообразный кислород поступает в рулевые камеры, где дожигается вместе с метаном в рулевых камерах, осуществляющих поворот ракеты, или дожигается сразу во всех рулевых камерах, если ракета в данный момент не нуждается в повороте.

Дополнительные элементы конструкции - демпферы (призваны сглаживать скачки давления, вызываемые циклической работой ПНА) и редукционные клапаны (поддерживают нужное давление в баках горючего и окислителя).

Похожие патенты RU2638705C1

название год авторы номер документа
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ ЗАКРЫТОГО ЦИКЛА С ДОЖИГАНИЕМ ОКИСЛИТЕЛЬНОГО И ВОССТАНОВИТЕЛЬНОГО ГЕНЕРАТОРНЫХ ГАЗОВ БЕЗ ПОЛНОЙ ГАЗИФИКАЦИИ И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2022
  • Губанов Давид Анатольевич
  • Востров Никита Владимирович
RU2801019C1
СПОСОБ КОМПЕНСАЦИИ РАЗЛИЧИЙ ФИЗИЧЕСКИХ СВОЙСТВ ГОРЮЧИХ В УНИВЕРСАЛЬНОМ БЕЗГЕНЕРАТОРНОМ ЖРД И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ (ВАРИАНТЫ) 2008
  • Рачук Владимир Сергеевич
  • Титков Николай Евгеньевич
  • Гарбера Станислав Николаевич
  • Пичугин Юрий Васильевич
RU2358142C1
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ И СПОСОБ ЕЕ РАБОТЫ 2015
  • Болотин Николай Борисович
RU2609547C1
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ, СПОСОБ ЕЕ РАБОТЫ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2015
  • Болотин Николай Борисович
RU2602656C1
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ, СПОСОБ ЕЕ РАБОТЫ И ГАЗОТУРБИННЫЙ ДВИГАТЕЛЬ 2015
  • Болотин Николай Борисович
RU2609664C1
ВОЗВРАЩАЕМАЯ СТУПЕНЬ РАКЕТЫ-НОСИТЕЛЯ И СПОСОБ ЕЕ РАБОТЫ 2015
  • Болотин Николай Борисович
RU2609549C1
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ И ЖИДКОСТНОЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 2000
  • Калмыков Г.П.
  • Лебединский Е.В.
  • Мосолов С.В.
  • Тарарышкин В.И.
  • Федотчев В.А.
RU2187684C2
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ С ДОЖИГАНИЕМ ТУРБОГАЗА 1999
  • Каторгин Б.И.
  • Чванов В.К.
  • Деркач Г.Г.
  • Мовчан Ю.В.
  • Челькис Ф.Ю.
  • Семенов В.И.
  • Толстиков Л.А.
  • Гнесин М.Р.
  • Ракшин В.К.
RU2158839C2
СПОСОБ РАБОТЫ ЖИДКОСТНОГО РАКЕТНОГО ДВИГАТЕЛЯ И ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 1996
  • Калмыков Г.П.
  • Янчилин Л.А.
RU2116491C1
ЖИДКОСТНАЯ РАКЕТНАЯ ДВИГАТЕЛЬНАЯ УСТАНОВКА 2014
  • Клепиков Игорь Алексеевич
  • Иванов Виталий Александрович
  • Лихванцев Анатолий Андреевич
  • Васильев Кирилл Сергеевич
  • Асташенков Николай Никитович
RU2563596C1

Иллюстрации к изобретению RU 2 638 705 C1

Реферат патента 2017 года Жидкостный ракетный двигатель с беспоршневым пневмонасосным агрегатом

Изобретение относится к области ракетной техники и может быть использовано при разработке ракеты-носителя (РН) для легких нагрузок. Жидкостный ракетный двигатель (ЖРД) включает камеры сгорания, четыре пневмонасосных агрегата для подачи топлива и окислителя, бак с гелием высокого давления, бак с жидким метаном, при этом каждый пневмонасосный агрегат содержит два выхода для отвода газообразной и жидкой компоненты, причем газообразные компоненты метана, кислорода отводятся к рулевым камерам сгорания для последующего дожигания. Изобретение обеспечивает уменьшение массы ЖРД и повышение его эффективности, а также упрощение конструкции ЖРД. 1 ил.

Формула изобретения RU 2 638 705 C1

Жидкостный ракетный двигатель, включающий камеры сгорания, четыре пневмонасосных агрегата для подачи топлива и окислителя, бак с гелием высокого давления, бак с жидким метаном, отличающийся тем, что каждый пневмонасосный агрегат содержит два выхода для отвода газообразной и жидкой компоненты, причем газообразные компоненты метана, кислорода отводятся к рулевым камерам сгорания для последующего дожигания.

Документы, цитированные в отчете о поиске Патент 2017 года RU2638705C1

ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ 1999
  • Каторгин Б.И.
  • Чванов В.К.
  • Челькис Ф.Ю.
  • Семенов В.И.
  • Полушин В.Г.
  • Мурлыкина Н.И.
  • Постников И.Д.
RU2158838C2
СИСТЕМА ВЫДАЧИ ИМПУЛЬСОВ ТЯГ 2014
  • Аксаментов Михаил Юрьевич
  • Васильев Валерий Алексеевич
  • Болтов Елисей Александрович
  • Голева Татьяна Васильевна
  • Казаков Владимир Евгеньевич
  • Макарьянц Михаил Викторович
  • Попова Ольга Петровна
  • Страмоусов Валерий Александрович
RU2560645C1
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ МНОГОКРАТНОГО ВКЛЮЧЕНИЯ (ВАРИАНТЫ) 2011
  • Архангельский Николай Иванович
RU2447313C1
Способ и система для контроля состояния группы установок 2013
  • Али Мохамед
  • Калиди Абдуррахман
  • Чинелли Филиппо
  • Моки Джанни
  • Чивели Валентина
RU2636095C2
US 20090257883 A1, 15.10.2009.

RU 2 638 705 C1

Авторы

Ильин Александр Михайлович

Матвеев Антон Михайлович

Дзись-Войнаровский Николай Николаевич

Суворов Андрей Валерьевич

Даты

2017-12-15Публикация

2016-05-23Подача