СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ И РАДИОНУКЛИДОВ Российский патент 2017 года по МПК C02F1/28 C02F1/44 B01D24/04 B01D71/48 C02F101/20 

Описание патента на изобретение RU2640244C2

Изобретение относится к области гидрометаллургии, в частности к способам очистки водных растворов от тяжелых металлов и радионуклидов сорбцией, и может быть использовано для очистки сточных и грунтовых вод.

Известен способ обработки жидкости с помощью устройства, которое имеет закрытый корпус и связанные с ним фильтровальные средства для очистки жидкости и средства организации потока, причем фильтровальные средства выполнены из облученной частицами трековой мембраны или протравленной трековой мембраны, изготовленной из материала на основе пластика определенной толщины с определенным размером пор, при этом для очистки фильтровальных средств используют обратный поток, который создают путем подачи через фильтровальные средства обработанной жидкости (патент RU 2176986; МПК C02F 1/00, B01D 29/66; 2001 г.).

Недостатком известного способа является то, что он предназначен для удаления только твердых частиц (но не ионов и молекул раствора), имеющих размеры, большие размеров пор трековой мембраны 0.05-10.0 мкм, и может быть реализован только путем фильтрации под давлением жидкости, такой как вода. Жидкость должна подаваться из распределительной системы специальной конструкции, для ее подачи необходимы средства организации потока, такие как средства организации входного и/или выходящего потоков жидкости.

Известен способ удаления ионов и молекул тяжелых металлов из водных растворов с использованием кремнезема в качестве сорбента и фильтрующего средства, выполненного в виде колонки с пучком полых мембран в форме капилляров, имеющих поры с диаметром, меньше размера частиц кремнезема, что позволяет пропускать ионы металлов, при этом раствор, содержащий металлы, противотоком пропускают через диализную капиллярную колонку внутри или снаружи полых мембранных капилляров, а суспензию кремнезема пропускают с противоположной стороны стенки мембранных капилляров (патент US 6858147; МПК B01D 61/00, B01D 61/24, B01J 20/10, C02F 1/28; 2004 г.).

Недостатками известного способа являются, во-первых, необходимость применения реактора специальной конструкции, во-вторых, необходимость производить дозирование, загрузку и выгрузку сорбента в водный раствор, в-третьих, необходимость создания разности давлений на входе и выходе раствора сорбента в фильтрационную колонку и суспензии сорбента во встречном потоке.

Известен способ очистки жидкости с помощью устройства, содержащего средства очистки, выполненные в виде цилиндра из активированного угля, покрытого по своим поверхностям, находящимся в контакте с неочищенной жидкостью, тонкой фильтрующей пленкой, изготовленной из материала на основе пластика, такого как трековая мембрана или протравленная трековая мембрана (патент RU 2224576; МПК B01D 27/02, C02F 1/18; 2003 год).

Недостатками известного способа являются технологическая сложность процесса, обусловленная конструктивной сложностью устройства для очистки жидкости; ограниченный ряд сорбирующихся примесей, в основном различные органические примеси и хлор.

Таким образом, перед авторами стояла задача разработать простой способ очистки водных растворов, обеспечивающий упрощение конструктивного оформления процесса наряду с возможностью удаления большого числа примесей, в том числе тяжелых металлов и радионуклидов.

Поставленная задача решена в предлагаемом способе очистки водных растворов от тяжелых металлов и радионуклидов путем сорбции на сорбенте с использованием в качестве фильтрующего средства трековых мембран, отличается тем, что в качестве сорбента используют порошкообразный силикагель SiO2, или катионит КУ2, или берлинскую лазурь, или его (ее) коллоидный раствор с предварительным его (ее) помещением в пакет произвольной формы, изготовленный из трековой мембраны на основе полиэтилентерефталата толщиной 50-75 мкм с размером пор равным 0.01-10 мкм, при этом сорбент занимает 5-80% от общего объема, а края торцевой части пакета герметично соединены путем склеивания.

При этом для склеивания краев торцевой части пакета могут быть использованы например, клеи типа «Супер Момент Водостойкий» с последующей обработкой торцов пакета герметиком, например, «Момент силикон нейтральный».

В настоящее время не известен способ очистки водных растворов, в котором используют порошкообразный сорбент, предварительно помещенный в пакет из трековой мембраны с рабочими характеристиками в предлагаемых диапазонах значений.

В предлагаемом способе трековую мембрану и помещенный в нее сорбент или его коллоидный раствор используют как единое целое, поскольку сорбент изолирован (окружен) материалом мембраны со всех сторон, находясь в замкнутом для твердых частиц мембранном пакете. При этом существенное значение имеет размер частиц сорбента и объем, ими занимаемый. Так диапазон размеров частиц сорбента 0.01-5000 мкм обеспечивает стабильный процесс сорбции, в случае использования сорбента с размером частиц менее 0.01 мкм наблюдается неконтролируемое истечение коллоидного раствора через поры мембраны, в случае использования сорбента с размером частиц более 5000 мкм наблюдается возникновение механических напряжений на стенки мембраны, граничащих с их разрывом. Также стабильность процесса сорбции обеспечивается соотношением объемов сорбента и объема мембранного пакета, в который он помещен. При нахождении в пакете менее 5% сорбента наблюдается схлопывание конверта, которое замедляет массоперенос ионов сорбата через поры, при нахождении в пакете более 80% сорбента наблюдается возникновение механических напряжений на стенки мембраны, граничащих с их устойчивостью. Проведение процесса в предлагаемых авторами условиях обеспечивает ряд преимуществ, обеспечивающих упрощение процесса наряду с возможностью удаления большого числа примесей. Устраняется необходимость использования специального хроматографического оборудования, систем ввода и выхода растворов сорбата, коллоидного раствора или суспензии сорбента, манипуляций с загрузкой или выгрузкой порошка, или суспензии, или коллоидного раствора сорбента в реактор или хроматографическую колонку. Для достижения технического результата существенное значение имеют рабочие характеристики трековой мембраны, поскольку для выполнения ее в виде пакета и дальнейшего функционирования в качестве фильтрующего материала необходимо обеспечить сочетание прочности и эластичности. Экспериментальные исследования, проведенные авторами, позволили установить, что при толщине мембраны более 75 мкм возможно появление трещин на сгибах пакета вследствие недостаточной эластичности, а при толщине мембраны менее 50 мкм возможно появление трещин на сгибах пакета вследствие недостаточной прочности. Оптимальными условиями проведения сорбционного процесса является предлагаемый диапазон размера пор мембраны. Так, размер пор менее 0,01 мкм может привести к неоправданному возрастанию времени достижения эмпирического сорбционного равновесия сорбента с сорбатом, размер пор более 10 мкм может обусловить механическую неустойчивость использованной мембраны с суммарной относительной площадью пор 5-20%.

Предлагаемый способ может быть осуществлен следующим образом.

Сорбент, например силикагель SiO2 фракции 0,5-1,5 мкм; катионит КУ2 (Na) фракции 200-2300 мкм; берлинская лазурь фракции 0,2-0,9 мкм предварительно помещают в пакет произвольной формы, выполненный из трековой мембраны на основе полиэтилентерефталата толщиной 70-75 мкм с размером пор равным 0,1-0,2 мкм. Сорбент занимает 5-80% от общего внутреннего объема. Края торцевой части пакета герметично соединены путем склеивания, в качестве склеивающего материала могут быть использованы, например, клеи типа «Супер Момент Водостойкий» с последующей обработкой торцов пакета герметиком, например, «Момент силикон нейтральный». Герметизация делает возможным контакт частиц сорбента с внешней средой только через сквозные поры мембраны. Пакет с сорбентом помещают в сорбат (сточные, промышленные, грунтовые воды или иные растворы) и выдерживают. После достижения требуемого коэффициента очистки или степени сорбции пакет с сорбентом удаляют как единое целое из раствора сорбата. После удаления из раствора сорбата жидкость из внутреннего пространства пакета самопроизвольно стекает и/или испаряется через сквозные поры, оставляя сухой сорбент в пакете для его дальнейшего препарирования. В случае необходимости, если в качестве сорбента используют нанодисперсный материал сорбента, частицы которого невозможно отделить от раствора, может быть использован коллоидный раствор этого сорбента, предварительно помещенный в пакет. Значительным преимуществом способа является возможность просто и эффективно осуществлять очистку почв с его использованием, для чего пакеты с сорбентом помещают в почву, при этом грунтовые воды являются в данном случае сорбатом.

Предлагаемый способ иллюстрируется следующим примером.

Пример. В стеклянный сосуд емкостью 1 л наливают мерным цилиндром объем V=500 мл дистиллированной воды, опускают на дно магнитную мешалку. В раствор добавляют аликвоту (1 мл) стандартного раствора соли металла Fe(III), Cd(II), Cs(I), перемешивают и отбирают пробу на анализ для определения начальной концентрации иона металла (Сн, мг/л): Cd(II) - 2,0; Cs(I) - 2,0 (1800 Бк/мл): Fe(III) - 5,0. Затем в раствор помещают пакет с сорбентом - силикагелем фракции 50-100 мкм. Масса сорбента внутри пакета m (г)=1,3; что составляет 53% от общего объема пакета. Размер пакета - 2,2×2,5(×0,3) см2, материал - трековая мембрана из лавсана толщиной 75 мкм с размером пор 0,1 мкм. Раствор с пакетом выдерживают до установления равновесия. Затем определяют массовую концентрацию Fe(III), Cd(II), Cs(I) в равновесном растворе (Ср, мг/л), вычисляют долю сорбированного катиона S (S=1-Cp/Сн), коэффициент распределения Kd (Kd=S/(1-S)×V/m, где концентрацию кадмия в растворе определяют методом инверсионной вольтамперометрией, железо определяют фотометрическим методом с сульфосалициловой кислотой, цезий - масс-спектрометрически на приборе ЭЛАН 9000 или радиометрически по бетта-активности радионуклида Cs-137 на установке УМФ 1500 м.

На фиг. 1 изображен внешний вид пакета с сорбентом - силикагелем фракции 50-100 мкм. Материал пакета - трековая мембрана из полиэтилентерефталата производства ЛЯР ОИЯИ толщиной 75 мкм с размером пор равным 0.01-10 мкм, общей поверхностью 9,2 см2.

Параллельно с использованием пакета с сорбентом повторяли эксперименты по сорбции ионов Fe(III), Cd(II), Cs(I), используя в качестве сорбента гранулированные материалы в их естественном состоянии сыпучести. Условия сорбции с использованием гранулированных материалов: масса сорбента m=1,3 г SiO2: 0,9 г KY2Na; 0,30 г берлинская лазурь, объем воды 500 мл, периодическое перемешивание. Оба процесса сорбции ведут с выдержкой в течение 7 сут в водопроводной воде. После установления равновесия суспензию сорбата отделяли от взвеси сорбента фильтрованием, определяли равновесное содержание металлов в фильтрате, вычисляли коэффициенты распределения Kd. Результаты определения коэффициентов распределения по предлагаемому способу и с использованием гранулированных сорбентов приведены в таблице.

Из результатов эксперимента, приведенных в таблице, видно, что как известный, так и предлагаемый способы сорбции, используемые для очистки растворов, позволяют достичь высокую степень очистки. Однако предлагаемый способ характеризуется упрощением процесса, поскольку исключает стадии фильтрования суспензии сорбента, его извлечение из фильтрационной колонки.

Таким образом, авторами предлагается простой способ очистки водных растворов, обеспечивающий упрощение конструктивного оформления процесса наряду с возможностью удаления большого числа примесей, в том числе тяжелых металлов и радионуклидов.

Похожие патенты RU2640244C2

название год авторы номер документа
Способ очистки почвы, загрязненной ионами цезия 2024
  • Поляков Евгений Валентинович
  • Волков Илья Владимировия
  • Иошин Алексей Александрович
RU2819426C1
Фильтрующий материал для очистки воды от радионуклидов и способ его получения 2021
  • Иванов Вадим Владимирович
RU2777359C1
Пакетированный адсорбент для сорбции веществ из масло-, жиро-, нефтезагрязненной воды 2022
  • Косяков Александр Викторович
  • Лапенко Александр Александрович
  • Кулигин Сергей Владимирович
  • Ишков Александр Дмитриевич
  • Белов Петр Васильевич
  • Буслаев Евгений Сергеевич
RU2797807C1
СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ И МИКРОЭЛЕМЕНТОВ 2013
  • Поляков Евгений Валентинович
  • Волков Илья Владимирович
  • Хлебников Николай Александрович
  • Ремез Виктор Павлович
  • Бердников Игорь Александрович
RU2550343C1
МЕМБРАННО-СОРБЦИОННЫЙ ЭЛЕМЕНТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2002
  • Зеликсон Б.М.
  • Басин Б.Я.
  • Вовенко Е.П.
RU2239490C2
СПОСОБ ИЗГОТОВЛЕНИЯ ТРЕКОВОЙ МЕМБРАНЫ 2006
  • Апель Павел Юрьевич
  • Жданов Геннадий Степанович
  • Березкин Владимир Викторович
  • Васильев Александр Борисович
  • Красавина Татьяна Алексеевна
  • Миняйло Людмила Викторовна
  • Мчедлишвили Борис Викторович
  • Туманов Александр Александрович
  • Фурсов Борис Иванович
RU2325944C1
СПОСОБ ОЧИСТКИ НИЗКОАКТИВНЫХ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ ОТ РАДИОНУКЛИДОВ 2000
  • Пензин Р.А.
  • Гелис В.М.
  • Трусов Л.И.
  • Милютин В.В.
  • Беляков Е.А.
  • Тарасов В.П.
  • Охрименко Е.А.
  • Булыгин В.К.
RU2172032C1
СПОСОБ ПЕРЕРАБОТКИ ЖИДКИХ РАДИОАКТИВНЫХ ОТХОДОВ 2017
  • Ремез Виктор Павлович
RU2675251C1
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИЦИОННОГО СОРБЕНТА НА ОСНОВЕ МИНЕРАЛЬНОГО И РАСТИТЕЛЬНОГО УГЛЕРОДСОДЕРЖАЩЕГО СЫРЬЯ 2015
  • Буханов Владимир Дмитриевич
  • Везенцев Александр Иванович
  • Соколовский Павел Викторович
  • Мухин Виктор Михайлович
  • Гурьянов Василий Васильевич
  • Милютин Виталий Витальевич
  • Нгуен Хоай Тьяу
RU2597400C1
Способ очистки жидких радиоактивных отходов и устройство для его осуществления 2018
  • Пензин Роман Андреевич
  • Милютин Виталий Витальевич
  • Демин Анатолий Викторович
RU2697824C1

Иллюстрации к изобретению RU 2 640 244 C2

Реферат патента 2017 года СПОСОБ ОЧИСТКИ ВОДНЫХ РАСТВОРОВ ОТ ТЯЖЕЛЫХ МЕТАЛЛОВ И РАДИОНУКЛИДОВ

Изобретение может быть использовано в гидрометаллургии для очистки водных растворов от тяжелых металлов и радионуклидов, а также для очистки сточных и грунтовых вод. Способ осуществляют путем сорбции на сорбенте с использованием в качестве фильтрующего средства трековых мембран, при этом порошкообразный сорбент с размерами частиц 0,01-5000 мкм или его коллоидный раствор предварительно помещают в пакет произвольной формы, изготовленный из трековой мембраны на основе полиэтилентерефталата толщиной 50-75 мкм с размером пор, равным 0,01-10 мкм, причем сорбент занимает 5-80% от общего объема, а края торцевой части пакета герметично соединены путем склеивания. В качестве порошкообразного сорбента используют силикагель SiO2, катионит KУ2(Na), берлинскую лазурь. Способ обеспечивает конструктивно простую и эффективную технологию удаления тяжелых металлов и радионуклидов. 1 з.п. ф-лы, 1 ил., 1 табл., 1 пр.

Формула изобретения RU 2 640 244 C2

1. Способ очистки водных растворов от тяжелых металлов и радионуклидов путем сорбции на сорбенте с использованием в качестве фильтрующего средства трековых мембран, отличающийся тем, что в качестве сорбента используют порошкообразный силикагель SiO2, или катионит КУ2, или берлинскую лазурь, или его (ее) коллоидный раствор с предварительным его (ее) помещением в пакет произвольной формы, изготовленный из трековой мембраны на основе полиэтилентерефталата толщиной 50-75 мкм с размером пор, равным 0,01-10 мкм, при этом сорбент занимает 5-80% от общего объема, а края торцевой части пакета герметично соединены путем склеивания.

2. Способ по п. 1, отличающийся тем, что для склеивания краев торцевой части пакета используют клей «Супер Момент Водостойкий» с последующей обработкой торцов герметиком.

Документы, цитированные в отчете о поиске Патент 2017 года RU2640244C2

УСТРОЙСТВО ДЛЯ ОЧИСТКИ ЖИДКОСТИ 1999
  • Аалто Кари
  • Антипов Валерий
  • Мельников Александр
RU2224576C2
УСТРОЙСТВО ДЛЯ СОЕДИНЕНИЯ БУКСИРНОГО ТРОСА, ПРЕИМУЩЕСТВЕННО ПЛАНЕРОВ, С БУКСИРОМ 1945
  • Огнев Б.Н.
SU67981A1
МНОГОСЛОЙНЫЙ ФИЛЬТРУЮЩИЙ МАТЕРИАЛ ДЛЯ УЛЬТРА- И МИКРОФИЛЬТРАЦИИ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2000
  • Жданов Г.С.
  • Фурсов Б.И.
  • Красавина Т.А.
  • Туманов А.А.
  • Чикин Ю.А.
  • Мчедлишвили Б.В.
  • Нечаев А.Н.
RU2170136C1
СПОСОБ ОЧИСТКИ ВОДЫ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Тарасевич Алексей Владимирович
RU2502680C2
Плоское перо 1926
  • Новорусский Н.В.
SU5222A1
US 9134267 B2, 15.09.2015
US 6712965 B1, 30.03.2004
CN 104478113 A, 01.04.2015.

RU 2 640 244 C2

Авторы

Поляков Евгений Валентинович

Иошин Алексей Александрович

Волков Илья Владимирович

Даты

2017-12-27Публикация

2016-04-18Подача