СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ И МИКРОЭЛЕМЕНТОВ Российский патент 2015 года по МПК G21F9/12 

Описание патента на изобретение RU2550343C1

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств.

Известен способ извлечения радионуклидов из водных растворов в динамическом режиме с помощью композиционного неорганического сорбента, содержащего немагнитную фракцию продукта переработки металлургического шлака, имеющего следующий состав: силикат кальция Ca2SiO4; оксид железа-лития Li0,28Fe21/34O32; коэзит SiO2; железистый гроссуляр Ca3Al1,332Fe0,668Si3O12; рингвудит Fe2SiO4; алюмосиликат натрия Na14,88Al15,26Si32,74O96; при этом процесс осуществляют при начальном значении pH не менее 2 и конечном значении pH не более 14 (патент RU 2330340, МПК G21F 9/12, 2008 год).

Недостатками известного способа являются недостаточно высокая степень очистки от радионуклидов сбросных водных растворов радиохимических производств, а также недостаточно широкий спектр сорбируемых элементов.

Известен способ очистки от радионуклидов водной технологической среды атомных производств путем фильтрации воды через гранулированную загрузку ферроцианидсодержащего сорбента, содержащего 0,2-2 масс.% гидразина; 35-48 масс.% воды и 20-35 масс.% ферроцианида никеля состава Me(I)4-2x[NixFe(CN)6, где Me(I)-Li+, Na+, K+, NH4+ или их смесь; остальное - гидроксид циркония (патент RU 2399974, МПК G21F 9/12, 2010 год) (прототип).

К недостаткам известного способа относятся возможность его применения только для очистки радионуклидов цезия, а также недостаточно высокая степень очистки (1,9·104-5,8·105).

Таким образом, перед авторами стояла задача разработать способ извлечения радионуклидов и микроэлементов как из жидких, так и из твердых объектов радиохимических производств, обеспечивающий широкий спектр извлекаемых элементов наряду с высокой степенью их извлечения.

Поставленная задача решена в способе извлечения радионуклидов и микроэлементов, включающем контактирование с сорбентом на основе цианоферрата переходного металла, в котором контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л.

В настоящее время из патентной и научно-технической литературы не известен способ извлечения радионуклидов и микроэлементов из загрязненных твердых и жидких объектов радиохимических производств с использованием сорбента в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л, при соотношении Тсорб:Ж не менее 0,001 кг/л.

Проведенные авторами исследования позволили установить, что использование суспензии порошка цианоферрата переходного металла в растворе гуминовой кислоты приводит к одновременному сорбционному извлечению не только ионов цезия и стронция, но также дополнительно большого числа ионов других микроэлементов - часто находящихся в радиоактивных отходах в результате попадания туда продуктов деления и активации (Co, Mn, Fe, Zr, Nb, U, Th, Y, La, РЗМ).

В основе предлагаемого технического решения лежит обнаруженное авторами усиление сорбционной специфичности (сродства) цианоферратов переходных металлов к катионам s-, p-, d- и f-элементов на уровне микроконцентраций под действием гуминовой кислоты. Это объясняется тем, что в присутствии гуминовой кислоты коэффициент распределения Kd (мг/г) указанных микроэлементов по отношению к цианоферратам переходных металлов возрастает на 1-3 порядка по величине вследствие того, что микроэлементы сорбируются не в виде простых аква-ионов, а в виде комплексов с гуминовой кислотой. Причем сама гуминовая кислота практически не сорбируется цианоферратом переходного металла. Здесь проявляется особенность гуминовой кислоты как представителя природных органических многофункциональных соединений: являясь комплексообразователем для всех ионов химических элементов в водных растворах, гуминовая кислота тем не менее не подавляет (как большинство известных лигандов), а усиливает сорбционное сродство образуемых комплексов с цианоферратами.

Экспериментальным путем авторами установлены количественные пределы содержания гуминовой кислоты, обеспечивающие увеличение коэффициента распределения. Так, при снижении содержания гуминовой кислоты менее 0,15 г/л наблюдается снижение коэффициента распределения, что обусловлено подавлением комплексообразования микроэлементов с гуминовой кислотой и, как следствие, подавлением их сорбции. При повышении содержания гуминовой кислоты более 0,25 г/л также наблюдается снижение коэффициента распределения, что обусловлено образованием особопрочных комплексов микроэлементов с димерной формой гуминовой кислоты, что подавляет их сорбцию.

На фиг.1 отображена зависимость коэффициента распределения (Kd) при сорбции микроэлементов Mg, Al, Si, Ca, Ti, V, Cr, Mn, Co, Ni, Sr, Zr, Cs, Ce, Nd, Th, U из пробы речной воды Белоярского водохранилища (Свердловская область) порошком берлинской лазури Fe4[Fe(CN)6]3 со средним размером частиц 200 мкм в зависимости от концентрации гуминовой кислоты в воде (pH=7,6; 23°C; масса сорбента - 0,20 г; объем раствора - 300 мл).

Предлагаемый способ может быть осуществлен следующим образом. Готовят суспензию путем добавления в раствор гуминовой кислоты с концентрацией 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта цианоферрата переходного металла в количестве, обеспечивающем соотношение Тсорб:Ж не менее 0,001 кг/л. Затем приводят в контакт с обрабатываемым объектом: выливают в обрабатываемый раствор или приводят в контакт с поверхностью обрабатываемого объекта. Предлагаемое техническое решение может быть реализовано в замкнутом объеме (статика сорбции в реакторе) или в проточной системе (динамика сорбции в фильтрационной колонке). В первом случае в реактор с очищаемым раствором вносят суспензию предлагаемого состава, после перемешивания дают выдержку для осаждения осадка, очищенный раствор с остатками гуминовой кислоты сливают для дальнейшей переработки или сброса в почву или речную систему. Осадок, сконцентрировавший целевые радионуклиды и микроэлементы, направляют на сушку и кондиционирование для последующего захоронения.

Во втором случае в трубопровод с очищаемым раствором подают суспензию, содержащую гуминовую кислоту и цианоферрат переходного металла. Раствор, перемешиваемый с суспензией, подают на вход колонки с фильтром из порошка того же самого цианоферрата переходного металла. В результате пропускания через фильтр раствора фильтрат с остатками гуминовой кислоты сливают для дальнейшей переработки или сброса в почву или речную систему. Осадок с фильтра колонки направляют на сушку и кондиционирование для последующего захоронения.

Предлагаемый способ может быть использован для десорбции радионуклидов и микроэлементов с поверхности твердых объектов, например, со стен реактора. В этом случае очищаемую поверхность приводят в контакт с суспензией, содержащей гуминовую кислоту и цианоферрат переходного металла. После обработки поверхности суспензию сливают и пропускают через колонку с фильтрующим дном. Фильтрат с остатками гуминовой кислоты сливают для дальнейшей переработки, сброса в почву или речную систему. Осадок, сконцентрировавший целевые радионуклиды и микроэлементы, направляют на сушку и кондиционирование для последующего захоронения.

Предлагаемый способ относится к "зеленой химии", поскольку гуминовые кислоты являются природно-совместимыми химическими веществами, способными к включению в естественные биохимические реакции в почвах и гидрологических системах. Именно поэтому фильтраты с остатками гуминовой кислоты можно перемещать непосредственно в окружающую среду, например, выливать в грунт или речную воду.

Предлагаемый способ иллюстрируется следующими примерами.

Пример 1. Берут пробу речной воды объемом 300 мл. Для контроля за содержанием ионов цезия вводят в пробу воды дополнительно раствор хлорида цезия в количестве, чтобы начальная концентрация цезия была 0,83 г/л. Затем готовят суспензию с использованием 45 мл раствора гуминовой кислоты, отобранного из подземной скважины №36 - РЭ г. Салехарда Тюменской области, с содержанием гуминовой кислоты 0,99 г/л. Разбавление этого объема в пробе соответствует концентрации 0,15 г/л гуминовой кислоты при добавлении раствора к пробе речной воды. В раствор гуминовой кислоты добавляют 0,20 г цианоферрата (II) железа (III), что соответствует отношению Тсорб:Ж=4,4:1 (кг/л). Суспензию добавляют к пробе речной воды и выдерживают до установления эмпирического равновесия при 22°C. Разделяют осадок и раствор фильтрацией через фильтр "синяя лента". После отделения осадка от раствора определяют концентрацию цезия и других элементов в осадке по анализу состава отделенного раствора методом масс-спектроскопии с индуктивно связанной плазмой на приборе Elan 9000 (Perkin Elmer) в количественном режиме. По результатам измерений вычисляют коэффициент распределения Kd (мг/г), характеризующий сродство сорбента к ионам цезия и других элементов по формуле (1):

,

где Co и C - начальная и равновесная (после сорбции) концентрации микроэлементов в растворе; V - 300 мл, m - 0,200 г.

Пример 2. Берут пробу речной воды объемом 300 мл. Для контроля за содержанием ионов цезия вводят в пробу воды дополнительно раствор хлорида цезия в количестве, чтобы начальная концентрация цезия была 0,83 г/л. Затем готовят суспензию с использованием 75 мл раствора гуминовой кислоты, отобранного из подземной скважины №36 - РЭ г. Салехарда Тюменской области, с содержанием гуминовой кислоты 0,99 г/л. Вводят этот объем гуминовой кислоты в пробу речной воды, что соответствует концентрации 0,25 г/л гуминовой кислоты при добавлении раствора к пробе речной воды. В раствор гуминовой кислоты добавляют 0,20 г цианоферрата (II) железа (III), что соответствует отношению Tсорб:Ж=2,7:1 (кг/л). Суспензию добавляют к пробе речной воды и выдерживают до установления эмпирического равновесия при 22°C. Разделяют осадок и раствор фильтрацией через фильтр "синяя лента". После отделения осадка от раствора определяют концентрацию цезия и других элементов в осадке методом масс-спектроскопии с индуктивно связанной плазмой на приборе Elan 9000 (Perkin Elmer) в количественном режиме. По результатам измерений вычисляют коэффициент распределения Kd (мг/г), характеризующий сродство сорбента к ионам цезия и других элементов по формуле (1):

,

где Co и C - начальная и равновесная (после сорбции) концентрации микроэлементов в растворе; V - 300 мл, m - 0,200 г.

В таблице представлены сравнительные коэффициенты распределения Kd, полученные при использовании предлагаемого способа и способа-прототипа.

Таблица Элементы Kd (предлагаемый способ) Kd (способ- прототип) Kd (предлагаемый способ) Kd(прототип) отн. едн. Li 80 <1 >80 Be 4500 <1 >4500 Mg 2200 300 7 Al 11000 370 30 Si 2500 <1 >2500 Ca 2400 500 5 Sc 1900 <1 >1900 Ti 4000 <1 >4000 V 38000 <1 >38000 Cr 11000 <1 >11000 Mn 19000 7000 3 Co 4100 120 34 Ni 7700 100 77 Sr 4700 <60 >70 Y 4500 <1 >4500 Zr 5200 <1 >5200 Cs 4200000 5800000 0,7 Ba 29100 <10 >2900 Ce 30000 <10 >3000 Nd 30500 <10 >3000 Th 31000 <10 >3100 U 7700 1500 5

Таким образом, предлагаемый способ позволяет значительно увеличить степень очистки от радионуклидов и микроэлементов загрязненные объекты радиохимической промышленности.

Похожие патенты RU2550343C1

название год авторы номер документа
СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ ИЗ ВОДНЫХ РАСТВОРОВ 2006
  • Аврорин Евгений Николаевич
  • Бамбуров Виталий Григорьевич
  • Барышева Нина Михайловна
  • Иванов Иван Иванович
  • Михайлов Геннадий Георгиевич
  • Пашкеев Игорь Юльевич
  • Поляков Евгений Валентинович
  • Овчинников Николай Александрович
  • Цветохин Александр Григорьевич
  • Швейкин Геннадий Петрович
RU2330340C2
СПОСОБ ПОЛУЧЕНИЯ ТОНКОСЛОЙНОГО СОРБЕНТА 2007
  • Цветохин Александр Григорьевич
  • Бетенеков Николай Дмитриевич
RU2356619C1
СОРБЕНТ ДЛЯ УДАЛЕНИЯ РАДИОНУКЛИДОВ ИЗ ВОДЫ 2011
  • Алыков Нариман Мирзаевич
  • Алыков Евгений Нариманович
  • Алыков Нариман Нариманович
  • Алыкова Тамара Владимировна
  • Евсина Елена Михайловна
  • Джигола Людмила Александровна
  • Кудряшова Анастасия Евгеньевна
  • Сорокина Ольга Анатольевна
  • Евсин Артем Михайлович
RU2499309C2
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА, СЕЛЕКТИВНОГО К РАДИОНУКЛИДАМ ЦЕЗИЯ (ВАРИАНТЫ) 2009
  • Авраменко Валентин Александрович
  • Железнов Вениамин Викторович
  • Каплун Елена Викторовна
  • Сергиенко Валентин Иванович
  • Шевелева Ирина Вадимовна
  • Шматко Сергей Иванович
RU2412757C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ЦЕЗИЯ 2012
  • Гордиенко Павел Сергеевич
  • Шабалин Илья Александрович
  • Ярусова Софья Борисовна
RU2516639C2
СПОСОБ ПОЛУЧЕНИЯ КОМПОЗИТНЫХ СОРБЕНТОВ НА ОСНОВЕ ЦЕЛЛЮЛОЗНЫХ НОСИТЕЛЕЙ 1997
  • Ремез Виктор Павлович
RU2111050C1
СПОСОБ ПОЛУЧЕНИЯ ФЕРРОЦИАНИДНЫХ СОРБЕНТОВ 2007
  • Сергиенко Валентин Иванович
  • Авраменко Валентин Александрович
  • Железнов Вениамин Викторович
  • Майоров Виталий Юрьевич
RU2345833C1
СПОСОБ РЕАБИЛИТАЦИИ РАДИОАКТИВНО-ЗАГРЯЗНЁННЫХ ПОЧВ 2023
  • Воронина Анна Владимировна
  • Байтимирова Марина Олеговна
  • Семенищев Владимир Сергеевич
RU2812709C1
СПОСОБ ПОЛУЧЕНИЯ СОРБЕНТА ЦЕЗИЯ 2012
  • Гордиенко Павел Сергеевич
  • Шабалин Илья Александрович
  • Ярусова Софья Борисовна
RU2510292C1
СПОСОБ ИЗВЛЕЧЕНИЯ МИКРОКОНЦЕНТРАЦИЙ УРАНА ИЗ ВОДНЫХ РАСТВОРОВ 2014
  • Блинов Андрей Евгеньевич
  • Файзрахманов Фидус Фаязович
RU2591956C1

Реферат патента 2015 года СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ И МИКРОЭЛЕМЕНТОВ

Изобретение относится к области сорбционной технологии извлечения радионуклидов и микроэлементов при переработке различных жидких и твердых объектов радиохимических производств. Заявленный способ включает контактирование с сорбентом на основе цианоферрата переходного металла, при этом контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л. Техническим результатом является возможность повышения степени очистки от радионуклидов и микроэлементов загрязненных объектов радиохимической промышленности. 1 табл.

Формула изобретения RU 2 550 343 C1

Способ извлечения радионуклидов и микроэлементов, включающий контактирование с сорбентом на основе цианоферрата переходного металла, отличающийся тем, что контактирование осуществляют в среде суспензии, содержащей гуминовую кислоту в количестве 0,15-0,25 г/л по отношению к объему обрабатываемого раствора или 0,15-0,25 г/дм2 по отношению к поверхности обрабатываемого объекта, при соотношении Tсорб:Ж не менее 0,001 кг/л.

Документы, цитированные в отчете о поиске Патент 2015 года RU2550343C1

СПОСОБ ОЧИСТКИ ОТ РАДИОНУКЛИДОВ ВОДНОЙ ТЕХНОЛОГИЧЕСКОЙ СРЕДЫ АТОМНЫХ ПРОИЗВОДСТВ 2009
  • Шарыгин Леонид Михайлович
  • Муромский Андрей Юлианович
  • Калягина Мария Леонидовна
  • Боровков Сергей Иванович
  • Боровкова Ольга Леонидовна
RU2399974C1
СПОСОБ ИЗВЛЕЧЕНИЯ РАДИОНУКЛИДОВ ИЗ ВОДНЫХ РАСТВОРОВ 2006
  • Аврорин Евгений Николаевич
  • Бамбуров Виталий Григорьевич
  • Барышева Нина Михайловна
  • Иванов Иван Иванович
  • Михайлов Геннадий Георгиевич
  • Пашкеев Игорь Юльевич
  • Поляков Евгений Валентинович
  • Овчинников Николай Александрович
  • Цветохин Александр Григорьевич
  • Швейкин Геннадий Петрович
RU2330340C2
ЭКСТРАГЕНТ-СОРБЕНТ ДЛЯ ОЧИСТКИ ПОЧВЫ 1993
  • Макеев Б.А.
  • Калиниченко А.Н.
  • Леонтьев А.И.
RU2080668C1
DE 19642839 A1, 30.04.1998
Штамп для обработки полосового и ленточного материала 1982
  • Ананченко Игорь Юрьевич
  • Афанасьев Евгений Васильевич
  • Боброва Татьяна Алексеевна
  • Гайдук Валерий Владимирович
  • Мендель Александр Михайлович
  • Усольцев Олег Валерьянович
  • Шпунькин Николай Фомич
SU1034817A1

RU 2 550 343 C1

Авторы

Поляков Евгений Валентинович

Волков Илья Владимирович

Хлебников Николай Александрович

Ремез Виктор Павлович

Бердников Игорь Александрович

Даты

2015-05-10Публикация

2013-11-21Подача