Способ картографирования земной поверхности бортовой радиолокационной станцией в переднем секторе обзора Российский патент 2018 года по МПК G01S13/89 

Описание патента на изобретение RU2640406C1

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах, и предназначено для решения задач картографирования земной поверхности.

Известен способ картографирования земной поверхности [«Многофункциональные радиолокационные системы» под ред. Б.Г. Татарского, М., Дрофа, 2007 г., стр. 24, 25, 174-195], основанный на излучении и приеме антенной отраженных от земной поверхности сигналов при перемещении (сканировании) луча антенны в заданном секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения поверхности Земли. Синтезирование апертуры антенны позволяет искусственно более чем на порядок обострить луч, используя зависимость доплеровского смещения частоты отраженного сигнала от углового положения отражающего элемента поверхности, что обеспечивает разделение целей, находящихся внутри луча. Однако синтезирование апертуры антенны в зоне углов порядка ±10° в горизонтальной плоскости (по азимуту) относительно строительной оси (курса) летательного аппарата представляет большие сложности из-за незначительной разницы доплеровского смещения частоты отраженного сигнала в передней зоне обзора. Этот недостаток не позволяет произвести картографирование земной поверхности с высоким разрешением в указанной зоне обзора.

Наиболее близким по технической сущности является «Способ картографирования земной поверхности бортовой радиолокационной станцией (БРЛС)» [RU 2529523, опубликовано 27.09.2014, МПК G01S 13/89]. Способ основан на излучении сигналов, приеме антенной отраженных от земной поверхности сигналов и их накоплении при перемещении луча антенны в переднем секторе углов по азимуту, синтезировании апертуры антенны и формировании радиолокационного изображения. При этом излучение и прием отраженного сигнала во всем секторе обзора осуществляется когерентно при сканировании луча вблизи нулевого ракурса, когда реальный луч, плавно перемещаясь, охватывает весь передний сектор, при этом создавая за счет сканирования дополнительное расширение спектра принимаемого сигнала. Затем осуществляют определение фазового набега за период повторения принятого когерентного радиолокационного сигнала, компенсацию фазового набега, формирование двух сигналов из скомпенсированного сигнала с разными знаками крутизны частотной модуляции, выделение сигнала с положительной и отрицательной крутизнами, соответствующим сигналам, принятым справа и слева относительно направления движения летательного аппарата, величины которых пропорциональны азимутальному направлению луча, спектральный анализ полученных сигналов, объединение полученных изображений из двух сигналов в одно радиолокационное изображение.

Недостатком указанного способа является низкая разрешающая способность по азимуту.

Технической проблемой, на решение которой направлено заявляемое изобретение, является повышение вероятности распознавания целей на радиолокационном изображении (РЛИ) вблизи линии пути носителя бортовой радиолокационной станции (БРЛС) (азимутальная зона углов ±10°).

Техническим результатом предлагаемого способа картографирования земной поверхности бортовой радиолокационной станцией в переднем секторе обзора является повышение разрешающей способности радиолокационного изображения по азимуту вблизи линии пути носителя БРЛС.

Сущность изобретения заключается в том, что когерентно излучают и накапливают сигнал в процессе сканирования лучом диаграммы направленности антенны вблизи линии пути носителя радиолокационной станции, когда луч диаграммы направленности антенны, плавно перемещаясь, охватывает весь передний сектор. Затем осуществляют обработку сигнала, заключающуюся в определении фазового набега за период повторения накопленного когерентного сигнала, компенсации фазового набега, определении крутизны частотной модуляции накопленного сигнала, выделении сигналов с положительной и отрицательной крутизнами частотной модуляции, соответствующих сигналам, принятым справа и слева относительно линии пути носителя бортовой радиолокационной станции, спектральном анализе полученных сигналов, объединении полученных спектральным анализом массивов амплитуд из двух сигналов в один массив амплитуд. Затем формируют из массива амплитуд радиолокационное изображение.

Новым в заявляемом способе является то, что после объединения полученных спектральным анализом массивов амплитуд из двух сигналов в один массив амплитуд сохраняют массив амплитуд, повторно сканируют тот же участок земной поверхности с когерентным накоплением отраженного сигнала, осуществляют обработку повторно накопленного сигнала, аналогичную обработке первого сигнала, причем выделение сигналов с положительной и отрицательной крутизнами частотной модуляции, соответствующих сигналам, принятым справа и слева относительно линии пути носителя бортовой радиолокационной станции, осуществляют с компенсацией разности фаз относительно первого накопленного сигнала, после обработки обоих сигналов суммируют поэлементно полученные массивы амплитуд сигналов, а радиолокационное изображение формируют из суммарного массива амплитуд.

На Фиг. 1 представлена функциональная схема бортовой радиолокационной станции, осуществляющей способ.

На Фиг. 2 приведена блок-схема алгоритма обработки накопленного радиолокационного сигнала.

На Фиг. 3 приведены графики сигнальных функций точечного отражателя, полученных по способу-прототипу и по заявляемому способу.

Способ картографирования земной поверхности бортовой радиолокационной станцией в переднем секторе обзора может быть реализован, например, в бортовой радиолокационной станции в режиме работы воздух-поверхность, состоящей из антенны (1), передатчика (2), приемника (3), процессора управления (4), процессора сигналов (5), индикатора (6). Выход процессора управления (4) соединен с первым входом антенны (1), выход передатчика (2) соединен со вторым входом антенны (1). Выход антенны (1) соединен с входом приемника (3). Выход приемника (3) подключен к входу процессора сигналов (5). Выход процессора сигналов (5) подключен к входу индикатора (6).

Способ картографирования земной поверхности бортовой радиолокационной станцией в переднем секторе обзора осуществляется следующим образом.

Режим картографирования запускается летчиком соответствующей командой из процессора управления (4). Процессор управления (4) задает параметры управления антенне (1) для просмотра соответствующей зоны обзора. Луч диаграммы направленности антенны (ДНА) выставляется антенной (1) на одну из границ зоны обзора - пусть это будет правая граница переднего сектора обзора ±10° по азимуту. После установки луч начинает плавно перемещаться справа налево в азимутальной плоскости, проводя сканирование зоны обзора по азимуту. В процессе обзора антенна (1) излучает сформированный передатчиком (2) когерентный радиолокационный сигнал (простые радиоимпульсы, фазокодоманипулированные (ФКМ) или линейно частотно-модулированные (ЛЧМ) сигналы) с периодом повторения, обеспечивающим перекрытие доплеровского диапазона частот, попадающих в зону обзора, и однозначное перекрытие зоны по дальности.

Отраженный от земной поверхности сигнал принимается антенной (1). С выхода антенны (1) сигнал поступает в приемник (3), где осуществляется аналоговая обработка сигнала. Затем принятый сигнал когерентно накапливается в процессоре сигналов (5). Процесс излучения/приема радиолокационного сигнала осуществляется в ходе сканирования лучом ДНА земной поверхности в заданном секторе обзора по закону, заданному процессором управления (4). По завершении сканирования (достижении лучом ДНА левой границы зоны обзора) завершается накопление сигнала в процессоре сигналов (5) и запускается обработка радиолокационного сигнала.

Блок-схема алгоритма обработки сигнала приведена на Фиг. 2. Сигнальная обработка начинается с определения фазового набега за период повторения принятого когерентного радиолокационного сигнала. Далее осуществляют компенсацию рассчитанного фазового набега. Компенсация устраняет набег, вызванный нестабильностью приемного тракта и доплеровским сдвигом частоты принятого сигнала.

Принятый сигнал обладает модуляцией по частоте, вызванной движением носителя БРЛС. Определяют значение крутизны этой частотной модуляции сигнала. Крутизна частотной модуляции позволяет разделить принятый сигнал на две составляющих – сигнал, принятый слева от линии пути носителя БРЛС, и сигнал, принятый справа от линии пути носителя БРЛС. Для этого осуществляют гетеродинирование сигнала функцией с положительным значением крутизны и отрицательным значением крутизны. В качестве гетеродинирующей функции можно использовать комплексные функции с квадратичной зависимостью от времени. Гетеродинирование осуществляется комплексной сверткой сигнала и гетеродинирующей функции.

S1(τ)=s(τ)*exp(jατ2)

S2(τ)=s(τ)*ехр(-jατ2)

где τ - время, j - мнимая единица, α - крутизна частотной модуляции сигнала, s(τ) - сигнал, S1(τ), S2 (τ) - результирующие сигналы.

Гетеродинированием сигнала функцией с положительной крутизной выделяют сигнал S1 (τ), накопленный справа относительно направления движения носителя, а с отрицательной крутизной S2 (τ) - слева. Таким образом из одного массива сигналов выделяют два массива сигналов.

Далее проводят спектральный анализ выделенных сигналов, например посредством быстрого преобразования Фурье (БПФ). Полученные спектральным анализом массивы амплитуд левой и правой половин объединяют в один массив амплитуд. Массив амплитуд сохраняют в процессоре сигналов (5).

Затем осуществляют повторное сканирование той же самой зоны обзора. Для этого процессор управления (4) выдает команды по корректировке положения луча антенны (1), чтобы скомпенсировать расстояние, которое пролетел самолет за время первого сканирования. Затем аналогично первому сканированию осуществляется повторное сканирование с когерентным накоплением сигнала.

Накопленный сигнал подвергают обработке в процессоре сигналов (5). Аналогично первому накопленному сигналу определяют и компенсируют фазовый набег за период повторения, определяют крутизну частотной модуляции сигнала.

Далее осуществляют выделение сигналов, принятых слева и справа относительно линии пути носителя. Для этого гетеродинируют сигнал двумя функциями с положительной и отрицательной крутизнами. Отличие этих функций заключается в компенсации во втором сигнале разности фаз относительно первого накопленного сигнала, вызванной временной задержкой между двумя накоплениями.

S11(τ)=s(τ+Т0)*exp(jα(τ+T0)2),

S22(τ)=s(τ+T0)*exp(-jα(τ+T0)2),

где τ - время, j - мнимая единица, α - крутизна частотной модуляции сигнала, s(τ+T0) - сигнал, смещенный на интервал времени Т0, Т0 - интервал времени между сканированиями, S11(τ), S22(τ) - результирующие сигналы.

Применяемая компенсация приводит по фазе первый и второй накопленные сигналы к одному моменту времени.

После выделения двух сигналов принятых справа S11(τ) и слева S22(τ) относительно линии пути носителя осуществляют спектральный анализ сигналов и их объединение в один массив амплитуд.

Далее осуществляют поэлементное суммирование массива амплитуд, сформированного при первом сканировании зоны обзора и сохраненного в процессоре сигналов (5), и массива амплитуд, сформированного при повторном сканировании зоны обзора.

Суммарный массив амплитуд преобразовывается в радиолокационное изображение, например пересчетом амплитуд в значения яркости, и выводится на индикатор (6) для демонстрации летчику или оператору.

На Фиг. 3 показаны графики сигнальных функций точечного отражателя, полученных моделированием по способу-прототипу (1) и по заявляемому способу (2). На графиках видно обужение центрального лепестка сигнальной функции (2) по сравнению с сигнальной функцией прототипа (1).

Таким образом за счет суммирования двух когерентных, искусственно приведенных по фазе к одному моменту времени сигналов, достигается повышение разрешающей способности по азимуту по сравнению с прототипом.

Похожие патенты RU2640406C1

название год авторы номер документа
Способ картографирования земной поверхности бортовой радиолокационной станцией 2016
  • Бекирбаев Тамерлан Османович
  • Бабокин Михаил Иванович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Лавренюк Дмитрий Сергеевич
RU2626012C1
СПОСОБ КАРТОГРАФИРОВАНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СТАНЦИЕЙ (БРЛС) 2013
  • Бабокин Михаил Иванович
  • Бекирбаев Тамерлан Османович
  • Лавренюк Дмитрий Сергеевич
  • Леонов Юрий Иванович
  • Толстов Евгений Федорович
RU2529523C1
Способ обнаружения наземных движущихся целей бортовой радиолокационной станцией 2018
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Лавренюк Дмитрий Сергеевич
  • Степин Виталий Григорьевич
RU2691771C1
Способ обнаружения вертолетов бортовой радиолокационной станцией 2018
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
  • Лавренюк Дмитрий Сергеевич
RU2691387C1
Способ картографирования земной поверхности бортовой радиолокационной станцией с антенной решеткой 2022
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Карпов Олег Анатольевич
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
RU2798822C1
Способ формирования радиолокационного изображения земной поверхности бортовой радиолокационной станцией 2019
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
  • Лавренюк Дмитрий Сергеевич
RU2717256C1
Способ определения скорости и направления движения наземных объектов бортовой радиолокационной станцией с антенной решеткой 2021
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
RU2786678C1
Способ формирования радиолокационного изображения земной поверхности бортовой радиолокационной станцией 2023
  • Бабокин Михаил Иванович
  • Горбай Александр Романович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Степин Виталий Григорьевич
RU2806651C1
Способ формирования изображения поверхности в бортовой радиолокационной станции с синтезированием апертуры антенны с электронным управлением лучом 2016
  • Макаров Павел Александрович
  • Сусляков Дмитрий Юрьевич
  • Таганцев Владимир Анатольевич
  • Филиппов Дмитрий Леонидович
  • Фролов Алексей Юрьевич
  • Колтышев Евгений Евгеньевич
  • Янковский Владимир Тадэушевич
RU2617116C1
СПОСОБ КОМПЕНСАЦИИ ФАЗОВЫХ НАБЕГОВ СИГНАЛА В БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СИСТЕМЕ И БОРТОВАЯ РАДИОЛОКАЦИОННАЯ СИСТЕМА С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ ДЛЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2004
  • Артемьев Александр Иванович
  • Рогов Вячеслав Яковлевич
  • Суслов Леонид Леонидович
RU2271019C1

Иллюстрации к изобретению RU 2 640 406 C1

Реферат патента 2018 года Способ картографирования земной поверхности бортовой радиолокационной станцией в переднем секторе обзора

Изобретение относится к области радиолокации, в частности к радиолокационным станциям, устанавливаемым на летательных аппаратах, и предназначено для решения задач картографирования земной поверхности. Достигаемый технический результат - повышение разрешающей способности по азимуту вблизи линии пути носителя бортовой радиолокационной станции (БРЛС). Указанный результат достигается за счет того, что когерентно излучают и накапливают сигнал в процессе сканирования лучом диаграммы направленности антенны вблизи линии пути носителя БРЛС, когда луч диаграммы направленности антенны, плавно перемещаясь, охватывает весь передний сектор, осуществляют сигнальную обработку накопленного сигнала, заключающуюся в определении и компенсации фазового набега, определении крутизны частотной модуляции сигналов, выделении сигналов, накопленных слева и справа от линии пути носителя БРЛС, спектральной обработке сигналов, объединении сигналов, накопленных слева и справа от линии пути носителя, затем повторно сканируют тот же участок земной поверхности с когерентным накоплением отраженного сигнала, осуществляют обработку повторно накопленного сигнала, аналогичную обработке первого сигнала, причем выделение сигналов с положительной и отрицательной крутизнами частотной модуляции осуществляют с компенсацией разности фаз относительно первого накопленного сигнала, после обработки обоих сигналов суммируют поэлементно полученные массивы амплитуд сигналов и формируют радиолокационное изображение из суммарного массива амплитуд. 3 ил.

Формула изобретения RU 2 640 406 C1

Способ картографирования земной поверхности бортовой радиолокационной станцией в переднем секторе обзора, заключающийся в том, что когерентно излучают и накапливают сигнал в процессе сканирования лучом диаграммы направленности антенны вблизи линии пути носителя радиолокационной станции, когда луч диаграммы направленности антенны, плавно перемещаясь, охватывает весь передний сектор, осуществляют обработку сигнала, заключающуюся в определении фазового набега за период повторения накопленного когерентного сигнала, компенсации фазового набега, определении крутизны частотной модуляции накопленного сигнала, выделении сигналов с положительной и отрицательной крутизнами частотной модуляции, соответствующих сигналам, принятым справа и слева относительно линии пути носителя бортовой радиолокационной станции, спектральном анализе полученных сигналов, объединении полученных спектральным анализом массивов амплитуд из двух сигналов в один массив амплитуд, и формируют из массива амплитуд радиолокационное изображение, отличающийся тем, что после объединения полученных спектральным анализом массивов амплитуд из двух сигналов в один массив амплитуд сохраняют массив амплитуд, повторно сканируют тот же участок земной поверхности с когерентным накоплением отраженного сигнала, осуществляют обработку повторно накопленного сигнала, аналогичную обработке первого сигнала, причем выделение сигналов с положительной и отрицательной крутизнами частотной модуляции, соответствующих сигналам, принятым справа и слева относительно линии пути носителя бортовой радиолокационной станции, осуществляют с компенсацией разности фаз относительно первого накопленного сигнала, после обработки обоих сигналов суммируют поэлементно полученные массивы амплитуд сигналов, а радиолокационное изображение формируют из суммарного массива амплитуд.

Документы, цитированные в отчете о поиске Патент 2018 года RU2640406C1

СПОСОБ КАРТОГРАФИРОВАНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СТАНЦИЕЙ (БРЛС) 2013
  • Бабокин Михаил Иванович
  • Бекирбаев Тамерлан Османович
  • Лавренюк Дмитрий Сергеевич
  • Леонов Юрий Иванович
  • Толстов Евгений Федорович
RU2529523C1
АНТЕННА БОРТОВОГО РАДИОЛОКАТОРА 2003
  • Фролов И.И.
  • Зеленюк Ю.И.
  • Колодько Г.Н.
  • Шестопалов А.В.
  • Никитин Ю.А.
RU2260230C1
СПОСОБ КОМПЕНСАЦИИ ФАЗОВЫХ НАБЕГОВ СИГНАЛА В БОРТОВОЙ РАДИОЛОКАЦИОННОЙ СИСТЕМЕ И БОРТОВАЯ РАДИОЛОКАЦИОННАЯ СИСТЕМА С СИНТЕЗИРОВАННОЙ АПЕРТУРОЙ АНТЕННЫ ДЛЯ ЛЕТАТЕЛЬНЫХ АППАРАТОВ 2004
  • Артемьев Александр Иванович
  • Рогов Вячеслав Яковлевич
  • Суслов Леонид Леонидович
RU2271019C1
СПОСОБ ПОВЫШЕНИЯ РАЗРЕШАЮЩЕЙ СПОСОБНОСТИ ПО ДАЛЬНОСТИ РАДИОЛОКАЦИОННОЙ СТАНЦИИ 2015
  • Бекирбаев Тамерлан Османович
  • Бабокин Михаил Иванович
  • Толстов Евгений Федорович
  • Леонов Юрий Иванович
  • Пастухов Андрей Викторович
  • Лавренюк Дмитрий Сергеевич
RU2596229C1
WO 2011001141 A, 24.02.2011
US 8212717 B2, 03.07.2012
US 7999726 B2, 16.08.2011.

RU 2 640 406 C1

Авторы

Бекирбаев Тамерлан Османович

Горбай Александр Романович

Леонов Юрий Иванович

Толстов Евгений Федорович

Бабокин Михаил Иванович

Пастухов Андрей Викторович

Бурдыло Александр Вадимович

Лавренюк Дмитрий Сергеевич

Даты

2018-01-09Публикация

2017-03-14Подача