Способ селективного анализа на основе иммунологических реакций с использованием биочипов Российский патент 2018 года по МПК G01N33/53 G01N33/532 

Описание патента на изобретение RU2642055C1

Изобретение относится к медицине, частности к средствам исследования и диагностики с помощью биочипов.

Биологические микрочипы широко используются в диагностике. В основе механизма действия биочипов лежит молекулярное распознавание анализируемых молекул молекулами биополимерами, нанесенными на чип. Это распознавание построено либо на взаимодействии рецепторов с лигандами (например, антител с антигенами), либо на гибридизации комплементарных цепей ДНК. В частности, разработаны биочипы, распознающие короткие олигонуклеотидные последовательности и позволяющие детектировать единичные мутации в генах. Известен способ исследования нуклеиновых кислот и белков с использованием биочипов (DE 10314746). Способ предусматривает подготовку биологической пробы и добавление в нее магнитных частиц с антителами, селективно связывающихся с возбудителями инфекций. В результате перемешивания смеси антитела селективно соединяются с возбудителями инфекций.

После окончания перемешивания смесь перемещают в зону селекции, представляющую собой подложку, на различных частях поверхности которой размещены различные группы антител (моно- или поликлональных) селективно связывающихся с возбудителями инфекций. Измеряя в микроскоп сравнительно (относительно возбудителей инфекций) крупные магнитные частицы через антитела и антигены, связанные с подложкой, определяют тип возбудителей инфекций.

Недостатком известного способа является низкая чувствительность из-за высокого уровня помех, создаваемых антигенами, несвязавшимися при перемешивании с соответствующими антителами соединенными с магнитными частицами.

Известен способ проведения анализов с помощью биочипа (KR 20130093323).

Способ предусматривает подготовку пробы и добавление в нее магнитных наночастиц. Полученная смесь помещается в зону селекции, например на подложку, под которой размещают постоянный магнит. В результате частицы аналита с со-соединенными с ними магнитными частицами фиксируются на подложке, подложка высушивается, а ее содержимое исследуется. Распределение анализируемых частиц на подложке зависит от целого ряда факторов. Это и вещество, форма и размеры наночастиц, параметры магнитного поля и т.д, что увеличивает вероятность ошибки при распознавании типа возбудителей инфекции.

Наиболее близким к заявляемому является известный способ анализа заболеваний или патогенных микроорганизмов с применением биочипа и с использованием существующих методов хемилюминесцентного биотестирования, используемых в крупных клинических лабораторных системах (US 2005221281).

Способ предусматривает подготовку пробы, смешение пробы с суперпарамагнитными частицами, соединенными антителами с биоматериалом пробы, транспортировку смеси в зону селекции через капилляры. При этом, чтобы обеспечить транспорт смеси через капилляр, используют средства создания давления на жидкость (шприц, вантуз, микроактюатор и т.д.). После прохождения капилляров и попадания зону селекции на смесь воздействуют магнитным полем, в результате чего комплексы из суперпарамагнитных частиц, соединенных антителами с биоматериалом пробы, «прилипают» к поверхности кюветы. После прохождения пробы поверхность кюветы промывается для удаления непрореагировавших остатков и выделенные частицы подвергаются анализу.

Недостатками данного способа являются большой уровень помех, создаваемых антигенами, несоединившимися через антитела с магнитными частицами в зоне пробоподготовки. Данные частицы захватываются антителами, фиксированными на подложке в зоне селективного детектирования, и блокируют в данном месте захват антител с магнитными частицами, которые детектируются в микроскопе. В результате размер зоны детектирования уменьшается, что приводит к уменьшению чувствительности детектирования данным способом.

Заявляемый способ направлен на повышение чувствительности детектирования.

Указанный результат достигается тем, что способ селективного анализа на основе иммунологических реакций с использованием биочипов включает подготовку пробы, смешение суперпарамагнитных частиц, соединенных антителами с антигенами пробы, транспортировку смеси в зону селективного детектирования по имуннологическим реакциям через капилляры и воздействие на смесь магнитным полем. При этом воздействие магнитным полем осуществляют во время прохождения смеси через капилляры, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода и используя изменяющееся во времени и в пространстве неоднородное магнитное поле.

Отличительными признаками заявляемого способа являются:

- воздействие магнитным полем осуществляют во время прохождения смеси через капилляры, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода;

- используют изменяющееся во времени и в пространстве неоднородное магнитное поле, перемещаемое вдоль капилляров по направлению от входа в них смеси до выхода.

После перемешивания в зоне пробоподготовки часть антигенов пробы может быть не соединена через антитела с суперпарамагнитными частицами. На данные комплексы магнитное поле не действует, и большая их часть останавливается в мертвой пристеночной зоне капилляров, не достигая зоны селективного детектирования по имуннологическим реакциям. На другую часть, с суперпарамагнитными частицами, действует внешнее магнитное поле, перемещающее суперпарамагнитные частицы, соединенные через антитела с антигенами пробы. В результате действия данной фильтрации в зоне селективного детектирования по имуннологическим реакциям уменьшается количество антигенов пробы без суперпарамагнитных частиц, уменьшающих чувствительность данного способа детектирования.

Повышение чувствительности обеспечивается наличием «микрофлюидного эффекта» - формирования мертвой зоны на стенках капилляров. Эффект заключается в следующем.

Все материалы из зоны пробоподготовки перемещаются по капиллярам в зону диагностики. Перемещение осуществляется под воздействием диффузии, градиента давления, межатомного взаимодействия. Движение внутри капилляра характеризуется возникновением пристеночной мертвой зоны, в которой частицы практически не перемещаются, поскольку силы взаимодействия с неподвижными атомами стенки препятствуют перемещению частиц.

Однако воздействие магнитного поля на суперпарамагнитные частицы создает силы, превосходящие силы взаимодействия, препятствующие перемещению частиц вдоль капилляра. В результате перемещающееся вдоль капилляра магнитное поле будет «тянуть» за собой суперпарамагнитную частицу и соединенные с ней антигены пробы и антитела. Скорость перемещения суперпарамагнитных частиц в результате многократно превышает скорости перемещения непрореагировавших частиц. В результате концентрация суперпарамагнитных частиц на выходе из капилляра становится многократно большей, что уменьшает вероятность ошибки при диагностировании.

Таким образом осуществляется фильтрация (отсев, селекция) непрореагировавших частиц, перемещаемых к зоне селективной детектирования по имуннологическим реакциям.

Воздействие неоднородным магнитным полем осуществляют во все время прохождения смеси по капиллярам, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода.

В каждой из областей селективного детектирования по имуннологическим реакциям находятся антитела только определенного типа. Для дальнейшего повышения чувствительности смесь после прохождения по капиллярам последовательно перемещают магнитным полем через все зоны селективного детектирования по имуннологическим реакциям. Таким образом уменьшаются потери антигенов пробы по сравнению с традиционным методом анализа, при котором анализируемые антигены пробы равномерно распределялись по всем областям селективного детектирования.

Сущность заявленного способа поясняется примером реализации и фиг.1, на которой схематично показано течение пробы от зоны подготовки к зоне селекции по капилляру (микроканалу). На фиг.1 цифрами обозначены: 1 - капилляр; 2 - мертвая зона для микрофлюидного потока; 3 - отдельная суперпарамагнитная частица; 4 - антитело; 5 - антиген пробы; 6 - комплекс, состоящий из антигена пробы, антитела и суперпарамагнитной частицы; 7 - направление вектора силы, воздействующего на суперпарамагнитную частицу в результате воздействия поля.

Способ реализуется следующим образом.

Биочип состоит из 3-х зон:

- пробоподготовки,

- селекции по суперпарамагнитным частицам (обеспечивается пропуск только их и соединенных с ними антигенами пробы и антителами дальше),

- селекции по имуннологическим реакциям и оптического детектирования.

В зону пробоподготовки вводят:

- антитела, соединенные посредством стрептавидина с суперпарамагнитными частицами;

- антигены пробы.

Ввод данных биологических материалов осуществляют шприцем.

В зоне пробоподготовки осуществляют перемешивание антигенов пробы и соединение их с антителами (предварительно соединенными с суперпарамагнитными частицами). Перемешивание осуществляют перемещающимся внешним магнитным полем.

В зоне селекции по суперпарамагнитным частицам осуществляется перемещение комплексов 6 «суперпарамагнитная частица + антиген пробы + с антитело». Перемещение этих комплексов с суперпарамагнитными частицами осуществляют транспортировкой по капиллярам при воздействии на поток внешним перемещающимся магнитным полем. Остальные частицы вследствие микрофлюидного эффекта задерживаются в «мертвом» пристеночном слое.

Из данной зоны селекции выходят в основном только суперпарамагнитные частицы, соединенные с антигенами пробы.

В зоне селекции и детектирования проходят имуннологические селективные реакции соединения антигенов пробы и антител. Для этого осуществляют последовательное перемещение суперпарамагнитных частиц (связанных с антителами и антигенами пробы) внешним магнитным полем через различные секции с антителами. При перемещении через секции производятся селективные имуннологические реакции и их соединение с антителами, закрепленными на подложке. В результате данных реакций закрепленными на подложке становятся и суперпарамагнитные частицы. Размеры суперпарамагнитных частиц и их оптический контраст многократно превышают по данным характеристикам бактерии и вирусы. Измеряя оптическим способом наличие закрепленных на подложке суперпарамагнитных частиц и их концентрацию, определяют количественные и качественные результаты имуннологических реакций.

В современных биочипах антигены пробы распределяют равномерно по зонам детектирования. При этом доля антигенов пробы в ячейке с соответствующими антителами уменьшается в количество секций раз. С целью повышения чувствительности антигены пробы, соединенные с суперпарамагнитными частицами, перемещают последовательно от одной детектирующей секции к другой и т.д. Поэтому при перемещении антигенов пробы через соответствующую зону концентрация антигенов пробы, перемещенных в соответствующую зону, не уменьшается.

Похожие патенты RU2642055C1

название год авторы номер документа
СПОСОБ ДЕТЕКЦИИ АНАЛИТА ИЗ РАСТВОРА НА ЧАСТИЦАХ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Морозов Виктор Николаевич
  • Шляпников Юрий Михайлович
RU2528885C2
Способ идентификации биологических маркеров, обнаруживаемых в биологических материалах человека в связи с возможным наличием патологических состояний организма человека, в том числе онкологических заболеваний, осуществляемый путем мультиплексного иммуноферментного сэндвич-иммуноанализа 2021
  • Максимов Николай Львович
  • Петровский Станислав Викторович
RU2779104C1
Способ детекции антител в биоматериале с использованием стеклянных микроструктурных волноводов 2021
  • Кудрявцева Ольга Михайловна
  • Кожевников Виталий Александрович
  • Бугоркова Светлана Александровна
  • Щуковская Татьяна Николаевна
  • Скибина Юлия Сергеевна
  • Занишевская Анастасия Андреевна
  • Шувалов Андрей Александрович
  • Силохин Игорь Юрьевич
  • Грязнов Алексей Юрьевич
  • Чайников Михаил Валерьевич
RU2753856C1
СПОСОБ ЭЛЕКТРОХИМИЧЕСКОГО ИММУНОАНАЛИЗА ДЛЯ ОПРЕДЕЛЕНИЯ ВИРУСОВ/АНТИГЕНОВ ВИРУСОВ 2013
  • Козицина Алиса Николаевна
  • Малышева Наталья Николаевна
  • Глазырина Юлия Александровна
  • Матерн Анатолий Иванович
  • Иванова Алла Владимировна
RU2550955C1
СПОСОБ ПОВЫШЕНИЯ ДИАГНОСТИЧЕСКОЙ ЭФФЕКТИВНОСТИ ИММУНОХРОМАТОГРАФИЧЕСКИХ СИСТЕМ ОПРЕДЕЛЕНИЯ ПАТОГЕНОВ 2012
  • Жердев Анатолий Виталиевич
  • Урусов Александр Евгеньевич
  • Дзантиев Борис Борисович
RU2557936C2
СПОСОБ ОБНАРУЖЕНИЯ И КЛАССИФИКАЦИИ БЕЛКОВЫХ МОЛЕКУЛ И ИХ ВЗАИМОДЕЙСТВИЙ 2021
  • Чайников Михаил Валерьевич
  • Пиденко Павел Сергеевич
  • Дрозд Даниил Дмитриевич
RU2756994C1
ТЕСТ-СИСТЕМА ДЛЯ ДИАГНОСТИКИ ВОЗБУДИТЕЛЕЙ ОСТРЫХ РЕСПИРАТОРНЫХ ВИРУСНЫХ ИНФЕКЦИЙ 2019
  • Клотченко Сергей Анатольевич
  • Васин Андрей Владимирович
  • Плотникова Марина Александровна
  • Тараскин Александр Сергеевич
  • Ложков Алексей Александрович
  • Гюлиханданова Наталия Евгеньевна
  • Елпаева Екатерина Сергеевна
  • Грядунов Дмитрий Александрович
  • Филиппова Марина Александровна
  • Савватеева Елена Николаевна
RU2733379C1
БИОЧИП ДЛЯ ФЛУОРЕСЦЕНТНОГО И ЛЮМИНЕСЦЕНТНОГО АНАЛИЗА 2005
  • Зимина Татьяна Михайловна
  • Лучинин Виктор Викторович
RU2280247C1
СИСТЕМА ЭКСПРЕСС-ДИАГНОСТИКИ И RFID-ИДЕНТИФИКАЦИИ БИОЛОГИЧЕСКИХ ОБЪЕКТОВ 2013
  • Попков Игорь Анатольевич
  • Калмыкова Анастасия Александровна
RU2565422C2
СПОСОБ СБОРА ИНФОРМАЦИИ ДЛЯ ЭКСПРЕСС-ДИАГНОСТИКИ ИНФЕКЦИОННЫХ ЗАБОЛЕВАНИЙ БИОЛОГИЧЕСКИХ ОБЪЕКТОВ - ЖИВОТНЫХ И ПТИЦ С ИСПОЛЬЗОВАНИЕМ RFID-МЕТОК И СИСТЕМА ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2013
  • Попов Игорь Анатольевич
  • Калмыкова Анастасия Александровна
RU2581913C2

Иллюстрации к изобретению RU 2 642 055 C1

Реферат патента 2018 года Способ селективного анализа на основе иммунологических реакций с использованием биочипов

Изобретение относится к медицине, в частности к средствам исследования и диагностики с помощью биочипов. Способ селективного анализа на основе иммунологических реакций с использованием биочипов включает подготовку пробы, смешение антигенов пробы с суперпарамагнитными частицами, соединенными с антителами к указанным антигенам пробы, транспортировку смеси в зону селективного детектирования по имуннологическим реакциям через капилляры и воздействие на смесь магнитным полем. При этом воздействие магнитным полем осуществляют во время прохождения смеси через капилляры, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода, причем используют изменяющееся во времени и в пространстве неоднородное магнитное поле. После прохождения по капиллярам смесь последовательно перемещают магнитным полем через все зоны селективного детектирования по имуннологическим реакциям. Изобретение обеспечивает повышение чувствительности. 1 ил.

Формула изобретения RU 2 642 055 C1

Способ селективного анализа на основе иммунологических реакций с использованием биочипов, включающий подготовку пробы, смешение антигенов пробы с суперпарамагнитными частицами, соединенными с антителами к указанным антигенам пробы, транспортировку смеси в зону селективного детектирования по имуннологическим реакциям через капилляры и воздействие на смесь магнитным полем, отличающийся тем, что воздействие магнитным полем осуществляют во время прохождения смеси через капилляры, перемещая его вдоль капилляров по направлению от входа в них смеси до выхода, при этом используют изменяющееся во времени и в пространстве неоднородное магнитное поле, причем после прохождения по капиллярам смесь последовательно перемещают магнитным полем через все зоны селективного детектирования по имуннологическим реакциям.

Документы, цитированные в отчете о поиске Патент 2018 года RU2642055C1

СИСТЕМА И СПОСОБ ОБНАРУЖЕНИЯ С ПОМОЩЬЮ МАГНИТНОЙ И/ИЛИ ЭЛЕКТРИЧЕСКОЙ МЕТКИ 2007
  • Диттмер Уэнди У.
  • Принс Менно В. Й.
RU2456618C2
АНАЛИЗЫ 2009
  • Эрмантраут Ойген
  • Кайзер Томас
  • Тухшеерер Йенс
  • Байер Вико
  • Шульц Торстен
  • Вестемейер Анке
RU2521639C2
УСТРОЙСТВО И СПОСОБЫ ДЕТЕКТИРОВАНИЯ АНАЛИТОВ В СЛЮНЕ 2009
  • Ниевенейс Йерун Х.
  • Еханли Ахмед М. Т.
  • Де Тейе Фемке К.
  • Пелссерс Эдуард Г.М.
RU2530718C2
СПОСОБ АНАЛИЗА СМЕСИ БИОЛОГИЧЕСКИХ И/ИЛИ ХИМИЧЕСКИХ КОМПОНЕНТОВ С ИСПОЛЬЗОВАНИЕМ МАГНИТНЫХ ЧАСТИЦ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2000
  • Никитин П.И.
  • Ветошко П.М.
RU2166751C1
СПОСОБ ДЕТЕКЦИИ АНАЛИТА ИЗ РАСТВОРА НА ЧАСТИЦАХ И УСТРОЙСТВО ДЛЯ ЕГО РЕАЛИЗАЦИИ 2011
  • Морозов Виктор Николаевич
  • Шляпников Юрий Михайлович
RU2528885C2
Устройство для изучения и исследования чувствительности цветного зрения 1949
  • Гуртовой Г.К.
  • Кравков С.В.
SU79276A1

RU 2 642 055 C1

Авторы

Багров Валерий Владимирович

Жаботинский Владимир Александрович

Крылов Владимир Иванович

Лускинович Петр Николаевич

Даты

2018-01-23Публикация

2017-07-12Подача