Изобретение относится к области нанотехнологии, в частности к получению нанокапсул кверцетина или дегидрокверцетина.
Ранее были известны способы получения микрокапсул.
В пат. 2173140, МПК A61K 009/50, A61K 009/127, Российская Федерация, опубликован 10.09.2001 предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения.
В пат. 2359662 МПК A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 опубликован 27.06.2009, Российская Федерация предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 оборотов/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28 опубликован 27.08.1999 Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул кверцетина или дигидрокверцетина, характеризующийся тем, что в качестве оболочки нанокапсул используется каррагинан, а в качестве ядра - кверцетин или дигидрокверцетин при получении нанокапсул методом осаждения нерастворителем с применением петролейного эфира в качестве осадителя, процесс получения нанокапсул осуществляется без специального оборудования.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием петролейного эфира в качестве осадителя, а также использование каррагинана в качестве оболочки частиц и кверцетин или дигидрокверцетин - в качестве ядра.
Результатом предлагаемого метода являются получение нанокапсул кверцетина или дигидрокверцетина в каррагинане.
ПРИМЕР 1. Получение нанокапсул кверцетина в каррагинане, соотношение ядро : оболочка 1:3
0,5 г кверцетина небольшими порциями добавляют в суспензию 1,5 г каррагинана в 5 мл бензола в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной - двумя молекулами пищевых жирных кислот и одной - двумя молекулами лимонной кислоты, причем лимонная кислота, как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул дигидрокверцетина в каррагинане, соотношение ядро : оболочка 1:3
1 г дигидрокверцетина небольшими порциями добавляют в суспензию 3 г каррагинана в 5 мл бензола в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул дигидрокверцетина в каррагинане, соотношение ядро : оболочка 1:1
1 г дигидрокверцетина небольшими порциями добавляют в суспензию 1 г каррагинана в 5 мл бензола в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают 5 мл петролейного эфира. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул. Выход составил 100%.
ПРИМЕР 4. Определение размеров нанокапсул методом NTA (см. рис 1 и 2).
Измерения проводили на мультипараметрическом анализаторе наночастиц Nanosight LM0 производства Nanosight Ltd (Великобритания) в конфигурации HS-BF (высокочувствительная видеокамера Andor Luca, полупроводниковый лазер с длиной волны 405 нм и мощностью 45 мВт). Прибор основан на методе анализа траекторий наночастиц (Nanoparticle Tracking Analysis, NTA), описанном в ASTM Е2834.
Оптимальным разведением для разведения было выбрано 1:100. Для измерения были выбраны параметры прибора: Camera Level = 16, Detection Threshold = 10 (multi), Min Track Length : Auto, Min Expected Size: Auto. длительность единичного измерения 215s, использование шприцевого насоса.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанокапсул витаминов группы В в каппа-каррагинане | 2016 |
|
RU2618449C1 |
Способ получения нанокапсул спирулины в каррагинане | 2016 |
|
RU2650966C1 |
Способ получения нанокапсул витаминов группы В | 2016 |
|
RU2646474C1 |
Способ получения нанокапсул экоцида в каррагинане | 2016 |
|
RU2688148C1 |
Способ получения нанокапсул тимола | 2020 |
|
RU2730834C1 |
Способ получения нанокапсул семян чиа (Salvia hispanica) в каррагинане | 2016 |
|
RU2624533C1 |
Способ получения нанокапсул витамина В | 2019 |
|
RU2703269C1 |
Способ получения нанокапсул спирулина в каппа-каррагинане | 2018 |
|
RU2675235C1 |
Способ получения нанокапсул адаптогенов в каррагинане | 2014 |
|
RU2607386C2 |
Способ получения нанокапсул сухого экстракта кордицепса в каппа-каррагинане | 2018 |
|
RU2691390C1 |
Изобретение относится в области нанотехнологии. Описан способ получения нанокапсул кверцетина или дигидрокверцетина в оболочке из каррагинана. При осуществлении способа кверцетин или дигидрокверцетин добавляют в суспензию каррагинана в бензоле в присутствии 0,01г Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин. Далее приливают петролейный эфир. Полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре. Массовое соотношение ядро:оболочка составляет 1:3 или 1:1. Способ по изобретению обеспечивает упрощение и ускорение процесса получения нанокапсул и увеличение выхода по массе. 2 ил., 4 пр.
Способ получения нанокапсул кверцетина или дигидрокверцетина в каррагинане, характеризующийся тем, что в качестве оболочки нанокапсул используют каррагинан, а в качестве ядра - кверцетин или дигидрокверцетин, при этом кверцетин или дигидрокверцетин добавляют в суспензию каррагинана в бензоле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества при перемешивании 1000 об/мин, далее приливают петролейный эфир, полученную суспензию нанокапсул отфильтровывают и сушат при комнатной температуре, при этом массовое соотношение ядро : оболочка составляет 1:3 или 1:1.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КВЕРЦЕТИНА ИЛИ ДИГИДРОКВЕРЦЕТИНА В ГЕЛЛАНОВОЙ КАМЕДИ | 2014 |
|
RU2573978C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ КВЕРЦЕТИНА И ДИГИДРОКВЕРЦЕТИНА В ХИТОЗАНЕ | 2014 |
|
RU2574897C1 |
ЧУЕШОВ В.И | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
СПОСОБ ПОЛУЧЕНИЯ МИКРОКАПСУЛИРОВАННЫХ ПРЕПАРАТОВ, СОДЕРЖАЩИХ ПИРЕТРОИДНЫЕ ИНСЕКТИЦИДЫ | 1997 |
|
RU2134967C1 |
СОЛОДОВНИК В.Д | |||
"Микрокапсулирование", Москва, "Химия", 1980, стр.136 | |||
Способ получения микрокапсул | 1978 |
|
SU676316A1 |
Способ получения микрокапсул | 1976 |
|
SU707510A3 |
МИКРОКАПСУЛА ДЛЯ ДЛИТЕЛЬНОГО ВЫСВОБОЖДЕНИЯ ФИЗИОЛОГИЧЕСКИ АКТИВНОГО ПЕПТИДА | 1993 |
|
RU2098121C1 |
Авторы
Даты
2018-01-24—Публикация
2016-07-26—Подача