СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОЭРЦИТИВНЫХ МАГНИТОВ ИЗ СПЛАВОВ НА ОСНОВЕ Nd-Fe-B Российский патент 2018 года по МПК H01F1/53 H01F1/08 B22F3/12 

Описание патента на изобретение RU2642508C1

Изобретение относится к области получения постоянных магнитов и может быть использовано при производстве высокоэнергетических постоянных магнитов на основе редкоземельных (РЗМ) сплавов и, в частности, на основе неодима, железа и бора (сплав Nd-Fe-B).

Постоянные магниты (ПМ), изготовленные из тройных сплавов с содержанием неодима до (33-34) %, полученных по внепечной фторидной технологии, имеют относительно низкую коэрцитивную силу и высокие значения остаточной магнитной индукции.

Для получения высокоэнергоемких ПМ с высокими значениями коэрцитивной силы можно корректировать химический состав этих сплавов.

Известны постоянный магнит и способ его изготовления [RU 2458423, H01F 41/02, H01F 1/053, С01В 35/04, опубл. 10.08.2012], в котором раскрыт способ изготовления постоянного магнита с Dy или Tb, продиффундировавшими в кристаллическую зернограничную фазу спеченного магнита. Спеченный магнит на основе железа-бора-редкоземельного элемента располагают в рабочей камере, которую нагревают до определенной температуры, испаряя испаряющийся материал, который размещен в той же самой или другой рабочей камере и состоит из гидрида, содержащего по меньшей мере один из Dy и Tb. Испаренный испаряющийся материал сцепляется с поверхностью спеченного магнита, и атомы металла Dy и/или Tb в сцепляющемся испаряющемся материале диффундируют в кристаллическую зернограничную фазу спеченного магнита.

Недостатком предложенного способа корректирования состава сплава является то, что корректировка происходит только в поверхностных слоях магнита, кроме того, в результате испарения Dy и/или Тb пары этих металлов неизбежно будут оседать не только на поверхности магнита, но и на стенках рабочей камеры, что приведет к перерасходу дорогостоящих материалов.

Известен способ получения высококоэрцитивных магнитов из сплавов на основе Nd-Fe-B [RU 1243947, H01F 1/053, H01F 41/02, опубл. 27.02.2013]. Способ осуществляется путем диффузионного отжига спеченных магнитов при температуре 600-1000°С, поверхность которых контактирует с дисперсными порошками материалов-источников диффузии, на основе диспрозия и/или тербия. В качестве источников диффузии используются дисперсные порошки металлического диспрозия (Dy) или тербия (Tb), порошки гидридов Dy и/или Tb или порошки сплавов на основе интерметаллических соединений с низкой температурой плавления (500-1200°С). При этом диффузионный отжиг осуществляют в течение 0,5-20 часов при температуре 550-850°С с последующим проведением дополнительного отжига при температуре 550-600°С в течение 0,5-1,0 ч.

Недостатком предложенного способа корректирования состава сплава является то, что корректировка происходит только в поверхностных слоях магнита, кроме того, наличие в технологическом процессе нескольких продолжительных высокотемпературных переделов увеличивает энергозатраты на производство магнитов.

Наиболее близким по достигаемому эффекту является изобретение «Магнитный материал для постоянных магнитов и способ его изготовления» [RU 2136068, H01F 1/057, С22С 1/04, опубл. 27.08.1999], принятый за прототип. В изобретении описан способ изготовления магнитного материала, который включает дробление базового сплава и сплава-добавки, смешивание сплавов, прессование смеси порошков в магнитном поле, спекание заготовки и охлаждение.

Недостатком предложенного способа являются трудности при изготовлении мелкодисперсного порошка сплава-добавки, т.к. получаемые металлические порошки являются высокоактивными, пирофорными и должны храниться и использоваться исключительно в инертной атмосфере.

Задача, на решение которой направлено изобретение, заключается в получении постоянных магнитов с высокими магнитными свойствами за счет корректировки состава магнитного сплава, при простоте работы с порошкообразными добавками и относительно низких удельных энергозатратах.

Поставленная задача решается тем, что способ получения высококоэрцитивных магнитов из сплавов на основе Nd-Fe-B включает в себя дробление базового сплава, смешивание сплава и добавки для коррекции состава сплава, прессование смеси порошков в магнитном поле, спекание заготовки и охлаждение, при этом используется добавка (3-8) % мас. от массы сплава для корректировки состава сплава, которая представляет собой гидриды лигатуры РЗМ-Fe в виде (РЗМНx+Fe) с размерами частиц (0,5-1) мм, а спекание магнита проводят в вакууме или при остаточном давлении до 10 Па при температурах (1100-1250)°С в течение 1-2 ч.

На чертежах приведены следующие графики:

- фиг. 1. Кривые размагничивания магнитов, полученных ТФЛ металлическими лигатурами;

- фиг. 2. Кривые размагничивания магнитов, полученных ТФЛ гидридами лигатур.

Кривая «0» относится к базовому магнитному сплаву 32Nd-Fe-1,1 В, а кривые 1-4 - к магнитам с корректированным химическим составом добавками: 75Nd-Fe, 42Dy-Fe, 40Tb-Fe и 70Tb-Fe соответственно.

Основными этапами корректировки (твердофазного легирования) состава магнитов на основе Nd-Fe-B были следующие:

1) дробление и измельчение слитка магнитного сплава;

2) добавление на стадии измельчения гидрида лигатуры РЗМ-Fe в виде (РЗМНx+Fe) в количестве (3-8) % мас. от массы сплава;

3) прессование и спекание смеси при температуре (1100-1250)°С;

4) намагничивание спеченных образцов.

При прессовании и спекании смеси при температуре (1100-1250)°С происходит полное дегидрирование РЗМНx, водород удаляется из рабочего объема, а полученный дегидрированием РЗМ дополняет состав сплава и участвует в рекомбинации фазы Nd2Fe14B, в результате получается заготовка постоянного магнита необходимого состава.

Проведенные эксперименты показали, что добавки лигатур в металлическом виде на этапе тонкого помола магнитных сплавов влияют преимущественно на коэрцитивную силу магнитов. Значение остаточной магнитной индукции или уменьшается, или остается на том же уровне. Это подтверждается также кривыми размагничивания, представленными на фиг. 1. Видно, что произошло увеличение коэрцитивной силы в 1,5-3 раза, но вместе с тем уменьшилось значение остаточной индукции. Это произошло вследствие частичного окисления химически активной лигатуры, в результате чего она выполняла более роль межфазного балласта, чем строительного материала для магнитной фазы.

При твердофазном легировании порошками гидридов (фиг. 2) неокисленные, легкоизмельчаемые порошки гидридов увеличивают коэрцитивную силу и остаточную индукцию получаемых магнитов. Процесс изготовления магнитов с использованием твердофазного легирования (ТФЛ) сплавов Nd-Fe-B порошками РЗМ-содержащих лигатур, полученных механическим и гидридным измельчением, показал, что:

- использование механически измельченных порошков для ТФЛ приводит к возрастанию коэрцитивной силы магнитов, а остаточная магнитная индукция при этом или остается прежней, или незначительно снижается. В некоторых случаях, особенно при высоком содержании РЗМ в лигатурах (более 80%), в продуктах измельчения визуально наблюдался наклеп частиц;

- процесс ТФЛ порошками гидридов является эффективным способом повышения свойств магнитов и корректировки химического состава магнитных сплавов Nd-Fe-B.

Кроме того, предложенный способ отличает простота работы с порошками гидридов лигатуры по сравнению с металлическими порошками. Металлические порошки лигатур являются высокоактивными и пирофорными веществами, поэтому должны храниться и использоваться исключительно в инертной атмосфере. Порошки гидридов лишены этих недостатков и их достаточно хранить в сухой герметичной таре. Взвешивать, пересыпать, измельчать, смешивать и транспортировать их можно на открытом воздухе.

При корректировке состава сплава порошками гидридов лигатуры не требуется каких-либо дополнительных тепловых энергозатрат.

Похожие патенты RU2642508C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОСТАБИЛЬНЫХ РЕДКОЗЕМЕЛЬНЫХ МАГНИТОВ 2018
  • Бурханов Геннадий Сергеевич
  • Лукин Александр Александрович
  • Кольчугина Наталья Борисовна
  • Прокофьев Павел Александрович
  • Кошкидько Юрий Сергеевич
  • Скотницова Катерина
RU2685708C1
СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОЭРЦИТИВНЫХ МАГНИТОВ ИЗ СПЛАВОВ НА ОСНОВЕ Nd-Fe-B 2011
  • Попов Александр Гервасиевич
  • Василенко Данил Юрьевич
  • Шитов Александр Владимирович
RU2476947C2
СПОСОБ ПЕРЕРАБОТКИ ШЛИФОТХОДОВ ОТ ПРОИЗВОДСТВА ПОСТОЯННЫХ МАГНИТОВ 1996
  • Буйновский А.С.
  • Качуровский А.Н.
  • Кобзарь Ю.Ф.
  • Кондаков В.М.
  • Макасеев А.Ю.
  • Макасеев Ю.Н.
  • Скрипников В.В.
  • Софронов В.Л.
  • Томаш Ю.Я.
  • Шадрин Г.Г.
  • Штефан Ю.П.
RU2111833C1
МАТЕРИАЛ ДЛЯ РЕДКОЗЕМЕЛЬНЫХ ПОСТОЯННЫХ МАГНИТОВ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2000
  • Савченко А.Г.
  • Менушенков В.П.
  • Лилеев А.С.
RU2174261C1
СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОСТАБИЛЬНЫХ РЕДКОЗЕМЕЛЬНЫХ МАГНИТОВ 2012
  • Бурханов Геннадий Сергеевич
  • Лукин Александр Александрович
  • Перевощиков Павел Сергеевич
  • Сергеев Сергей Владимирович
  • Кольчугина Наталья Борисовна
  • Дормидонтов Андрей Гурьевич
RU2493628C1
ПОСТОЯННЫЙ МАГНИТ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ 2007
  • Нагата Хироси
  • Сингаки Йосинори
RU2454298C2
ПОЛУЧЕНИЕ МАТЕРИАЛА РЕДКОЗЕМЕЛЬНОГО ПОСТОЯННОГО МАГНИТА 2005
  • Накамура Хадзиме
  • Хирота Коити
  • Минова Такехиса
RU2367045C2
Способ изготовления спеченных редкоземельных магнитов из вторичного сырья 2021
  • Прокофьев Павел Александрович
  • Кольчугина Наталья Борисовна
  • Дормидонтов Николай Андреевич
  • Бакулина Анна Сергеевна
  • Русинов Денис Анатольевич
  • Железный Марк Владимирович
RU2767131C1
РЕДКОЗЕМЕЛЬНЫЙ ПОСТОЯННЫЙ МАГНИТ 2006
  • Накамура Хадзиме
  • Хирота Коити
  • Симао Масанобу
  • Минова Такехиса
RU2377680C2
СПОСОБ ПОЛУЧЕНИЯ ПОРОШКА ГИДРИДА СПЛАВА НА ОСНОВЕ РЕДКОЗЕМЕЛЬНОГО МЕТАЛЛА ИЗ ВТОРИЧНЫХ МАГНИТНЫХ МАТЕРИАЛОВ НА ОСНОВЕ СИСТЕМЫ РЕДКОЗЕМЕЛЬНЫЙ МЕТАЛЛ-ЖЕЛЕЗО-БОР 2023
  • Грачев Евгений Кириллович
  • Буйновский Александр Сергеевич
  • Сачков Виктор Иванович
  • Болдышев Даниил Владимирович
  • Зайцев Дмитрий Викторович
  • Муслимова Александра Валерьевна
  • Таранов Денис Васильевич
  • Огурцов Александр Викторович
  • Шарин Максим Константинович
RU2818933C1

Иллюстрации к изобретению RU 2 642 508 C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ ВЫСОКОКОЭРЦИТИВНЫХ МАГНИТОВ ИЗ СПЛАВОВ НА ОСНОВЕ Nd-Fe-B

Изобретение относится к области получения постоянных магнитов и может быть использовано при производстве высокоэнергетических постоянных магнитов на основе редкоземельных (РЗМ) сплавов и, в частности, на основе неодима, железа и бора (сплав Nd-Fe-B). Способ получения высококоэрцитивных магнитов из сплавов на основе Nd-Fe-B включает дробление базового сплава, смешивание сплава и добавки для коррекции состава сплава, прессование смеси порошков в магнитном поле, спекание заготовки и охлаждение, при этом добавкой для коррекции состава сплава являются гидриды лигатуры РЗМ-Fe, а спекание магнита производят в вакууме или при остаточном давлении в течение 1-2 ч. Изобретение позволяет увеличить коэрцитивную силу и остаточную индукцию получаемых магнитов. 1 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 642 508 C1

1. Способ получения высококоэрцитивных магнитов из сплавов на основе Nd-Fe-B, включающий дробление базового сплава, смешивание сплава и добавки для коррекции состава сплава, прессование смеси порошков в магнитном поле, спекание заготовки и охлаждение, отличающийся тем, что добавкой для коррекции состава сплава являются гидриды лигатуры РЗМ-Fe в виде (РЗМНx+Fe) с размерами частиц (0,5-1) мм в количестве (3-8) % мас. от массы сплава.

2. Способ по п. 1, отличающийся тем, что спекание магнита производят в вакууме или при остаточном давлении до 10 Па при температуре (1100-1250)°C в течение 1-2 ч.

Документы, цитированные в отчете о поиске Патент 2018 года RU2642508C1

СПОСОБ ИЗГОТОВЛЕНИЯ ТЕРМОСТАБИЛЬНЫХ РЕДКОЗЕМЕЛЬНЫХ МАГНИТОВ 2012
  • Бурханов Геннадий Сергеевич
  • Лукин Александр Александрович
  • Перевощиков Павел Сергеевич
  • Сергеев Сергей Владимирович
  • Кольчугина Наталья Борисовна
  • Дормидонтов Андрей Гурьевич
RU2493628C1
RU 2005137073 A, 20.06.2007
Приспособление для крепления судовой мебели 1928
  • Васильев Н.Я.
SU14583A1
WO 2010135958 A1, 02.12.2010
US 0009435012 B2, 06.06.2016.

RU 2 642 508 C1

Авторы

Софронов Владимир Леонидович

Русаков Игорь Юрьевич

Карташов Евгений Юрьевич

Макасеев Юрий Николаевич

Буйновский Александр Сергеевич

Калаев Михаил Евгеньевич

Иванов Захар Сергеевич

Хорохорин Вадим Станиславович

Даты

2018-01-25Публикация

2016-11-21Подача