СПОСОБ ИСПЫТАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ НА СТОЙКОСТЬ К ВТОРИЧНОМУ ДУГООБРАЗОВАНИЮ Российский патент 2018 года по МПК G01R31/12 G01R31/28 

Описание патента на изобретение RU2644455C1

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке и при приемочных испытаниях радиоэлектронной аппаратуры космических аппаратов.

Известен способ испытания радиоэлектронной аппаратуры космических аппаратов на стойкость к электростатическим разрядам [1], основанный на имитации одного из условий космического пространства, радиационного воздействия, перед испытанием на стойкость к электростатическим разрядам. Такой подход позволяет повысить достоверность результатов испытания в электронных схемах радиоэлектронной аппаратуры космических аппаратов.

Недостатком данного способа является невозможность выявить дефекты радиоэлектронной аппаратуры, не связанные с радиационным воздействием, но способные приводить к снижению стойкости радиоэлектронной аппаратуры к электростатическим разрядам, следствием чего возможно вторичное дугообразование.

Известен способ испытания элементов радиоэлектронной аппаратуры космических аппаратов на стойкость к дугообразованию [2]. Способ основан на инициировании первичного дугового разряда и воздействии плазмой этого разряда на испытываемый элемент с целью определения его стойкости к инициированию вторичной дуги.

Недостатком данного способа является риск выхода из строя объекта испытания в случае, если способ применяется не к конструктивным элементам аппаратуры, а к работоспособной радиоэлектронной аппаратуре, в том числе и к не обладающей достаточной стойкостью к дугообразованию. Это связано с наличием дефектов, снижающих электрическую прочность.

Инициирование дугового разряда в изолирующих промежутках происходит в результате электрического пробоя. Для пробоя вакуумных промежутков требуются электрические поля свыше 100 кВ/см, что при уровне напряжений 100 B, используемых в системах электропитания космических аппаратов, может возникнуть в промежутках длиной менее 10 мкм. Изолирующие промежутки столь малой длины не используются в конструкции радиоэлектронной аппаратуры. Поэтому проблема дугообразования в аппаратуре космического аппарата стоит наиболее остро в начальный период эксплуатации аппарата, в процессе его выведения на орбиту и обезгаживания на орбите. В этот период условия изоляции внутри аппарата не являются вакуумными и возможно инициирование дуги по механизму пробоя газонаполненного промежутка, описываемому законом Пашена. Напряжение пробоя понижается при наличии мест контакта металл-диэлектрик-газ низкого давления, и для предотвращения пробоя платы радиоэлектронной аппаратуры после установки электрорадиоизделий покрываются защитной полимерной пленкой на основе эпоксидных смол, полиуретана или парилена.

Перед установкой в космической аппарат радиоэлектронная аппаратура испытывается в работающем состоянии, в том числе на устойчивость к электростатическим разрядам (ISO 11221: 2011 «Системы космические. Космические солнечные панели. Космический аппарат, заряжаемый индуцированным электростатическим разрядом. Методы испытаний»), при имитации условий эксплуатации аппарата, включая диапазон давлений, соответствующий выведению аппарата от стартовой площадки до орбиты, и наличие плазмы первичного электростатического разряда. Однако при наличии сквозных дефектов сплошности защитного диэлектрического покрытия существует риск инициирования дугового разряда, следствием которого может быть выход испытываемой аппаратуры из строя.

Задачей заявляемого технического решения является снижение риска повреждения радиоэлектронной аппаратуры в процессе ее испытания в плазме на стойкость к дугообразованию при рабочих напряжениях, превышающих падение потенциала на дуге и сохранение достоверности испытаний.

Техническим результатом данного изобретения является устранение сквозных дефектов сплошности защитного покрытия путем восстановления полимерного покрытия на токоведущих проводниках испытываемой аппаратуры.

Указанный технический результат достигается за счет того, что непосредственно перед испытанием работающей аппаратуры в плазменном окружении при рабочих напряжениях, превышающих падение потенциала на дуге, и в едином цикле с испытанием выполняется процедура восстановления полимера на поверхности сквозных дефектов сплошности защитного полимерного покрытия. С этой целью на аппаратуру в неактивном (нерабочем) состоянии воздействуют одновременно плазмой и реакционным газом, состоящим из двух или более компонентов, один или более из которых способен полимеризоваться в плазме, при этом аппаратура находится под положительным потенциалом смещения относительно потенциала плазмы, и по абсолютной величине не превышающим падение потенциала на дуге.

Используемый реакционный газ состоит из инертного газа и мономера или димера в газообразном состоянии.

Кроме того, при воздействии плазмы на испытываемую аппаратуру, находящуюся в неактивном состоянии, потенциал смещения аппаратуры относительно потенциала плазмы по абсолютной величине превышает первый потенциал ионизации атомов инертного газа.

Для восстановления полимера используется тот же источник плазмы, который используется для формирования плазменного окружения, имитирующего плазму первичного разряда.

Техническая сущность изобретения заключается в следующем. Перед тем как радиоэлектронная аппаратура испытывается при рабочих напряжениях, превышающих падение потенциала на дуге, на стойкость к дугообразованию путем воздействия плазмой, имитирующей плазму первичного разряда, испытываемая аппаратура подвергается воздействию этой же плазмой, но в неактивном состоянии. Такое воздействие не является опасным для аппаратуры, но не производит какого-либо эффекта. Для достижения положительного эффекта при воздействии плазмой на радиоэлектронную аппаратуру в неактивном состоянии формируется поток реакционного газа, состоящего из инертного газа и мономера или димера, способного полимеризоваться под воздействием плазмы, и этот поток направляется на аппаратуру. Если при этом на испытываемую аппаратуру подать напряжение смещения положительной полярности относительно плазмы, превышающее по абсолютной величине первый потенциал ионизации инертного газа, то в местах нарушения защитного полимерного покрытия на токоведущих проводниках аппаратуры будет зажигаться несамостоятельный тлеющий разряд, не переходящий в дугу из-за недостаточно высокого для зажигания дуги напряжения. Катодом тлеющего разряда в данном случае является вся рабочая камера, заполненная плазмой, а анодом - токоведущие проводники испытываемой аппаратуры, непокрытые защитной пленкой. Поскольку площадь катода многократно больше площади анода, свечение разряда будет сосредоточено в местах нарушения полимерного покрытия на токоведущих проводниках испытываемой аппаратуры. За счет плазмохимических реакций на поверхностях, соприкасающихся с плазмой, будет происходить полимеризация мономера или димера [3], причем, наиболее интенсивно этот процесс будет происходить в местах более высокой концентрации плазмы, то есть в местах нарушения полимерного покрытия. Как только все открытые токоведущие места испытываемой аппаратуры становятся покрытыми полимерной пленкой, горение несамостоятельного тлеющего разряда прекращается, что сопровождается погасанием анодного свечения и служит индикатором готовности испытываемой аппаратуры к испытаниям на устойчивость к дугообразованию в активном состоянии.

Указанный способ может быть реализован с использованием схем, представленных на Фиг. 1 и Фиг. 2.

Для воздействия плазмой на аппаратуру в неактивном состоянии в соответствии со схемой на Фиг. 1 испытываемый модуль радиоэлектронной аппаратуры 1, к которому подключен кабель входных цепей 2 и кабель выходных цепей 3, помещен в атмосферу аргона давлением 100 Па, в которой осуществляется испытание модуля на устойчивость к дугообразованию в плазме 4, создаваемой источником плазмы 5. Перед проведением испытаний кабели 2 и 3 соединяются таким образом, что все проводники кабелей 2 и 3 объединены в одну точку и подключены к источнику 6 напряжения смещения +18 B. Такое напряжение выше первого потенциала ионизации аргона +15,8 B, но ниже падения потенциала на дуговом разряде, превышающем 20 B для дуги с холодным катодом. За счет существования плазмы 4 вокруг испытываемой аппаратуры 1 при наличии места оголения токоведущих проводников аппаратуры 1 в местах оголения зажигается несамостоятельный газовый разряд. При обнаружении такого разряда создается поток реакционного газа 8, направленный в сторону испытываемой аппаратуры 1, с использованием источника 7. Реакционный газ состоит из ди-пара-ксилелена и аргона. В местах горения несамостоятельного газового разряда на поверхности оголенных токоведущих проводников происходит осаждение поли-пара-ксилелена за счет плазмохимической реакции. В результате роста пленки поли-параксилелена в течение промежутка времени в несколько минут происходит погасание несамостоятельного разряда. Отсутствие самостоятельного разряда при напряжении смещения +18 B испытываемой аппаратуры 1 в плазме 4 является основанием для выполнения испытаний на устойчивость к дугообразованию при рабочих напряжениях уровня 100 B в соответствии со схемой на Фиг. 2. С этой целью кабель входных цепей 2 подключается к имитатору входных цепей 9, кабель выходных цепей подключается к имитатору выходных цепей 10, и аппаратура 1 переводится в активное состояние при рабочих напряжениях в плазменном окружении 4, создаваемом источником плазмы 5. При этом отсутствие оголенных токоведущих частей аппаратуры 1, доступных для окружающей плазмы 4, гарантирует отсутствие инициирования дуги вследствие существования сквозных дефектов сплошности защитного полимерного покрытия.

Источники информации

1. Анисимов А.В., Новоселов Ю.И. Способ испытания радиоэлектронной аппаратуры космических аппаратов на стойкость к электростатическим разрядам // Патент РФ (19) RU (11) 2157545 (13) C1 (51), МПК G01R 31/28, G05F 1/56. - Заявл. 12.11.1999. - Опубл. 10.10.2000.

2. Батраков А.В., Карлик К.В., Попов С.А. Способ определения стойкости к дугообразованию элементов радиоэлектронной аппаратуры космических аппаратов // Патент РФ (19) RU (11) 2539964 (13) C1 (51), МПК G01R 31/28, H01J 37/00. - Заявл. 08.08.2013. - Опубл. 27.01.2015.

3. В. Ширшова, А. Избушкин, Е. Фомченко. Полипараксилеленовые покрытия в технологии РЭА. Состояние, перспективы // Печатный монтаж. - 2010. - №1. - стр. 22-27.

Похожие патенты RU2644455C1

название год авторы номер документа
СПОСОБ ОПРЕДЕЛЕНИЯ СТОЙКОСТИ К ДУГООБРАЗОВАНИЮ ЭЛЕМЕНТОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ 2013
  • Батраков Александр Владимирович
  • Карлик Константин Витальевич
  • Попов Сергей Анатольевич
RU2539964C1
СПОСОБ КОНТРОЛЯ СПЛОШНОСТИ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ НА ЭЛЕМЕНТАХ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2015
  • Батраков Александр Владимирович
  • Попов Сергей Анатольевич
RU2613571C1
ПЕЧАТНАЯ ПЛАТА ДЛЯ БОРТОВОЙ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ 2012
  • Абрамешин Андрей Евгеньевич
  • Белик Глеб Андреевич
  • Востриков Александр Владимирович
  • Саенко Владимир Степанович
RU2497319C1
СПОСОБ ДЕКОРПУСИРОВАНИЯ ИНТЕГРАЛЬНЫХ МИКРОСХЕМ 2014
  • Анашин Василий Сергеевич
  • Никольская Татьяна Владимировна
  • Сурнин Владимир Николаевич
  • Яскин Юрий Сергеевич
RU2572290C1
СПОСОБ ОБНАРУЖЕНИЯ И УСТРАНЕНИЯ ДЕФЕКТОВ СПЛОШНОСТИ ДИЭЛЕКТРИЧЕСКОГО ПОКРЫТИЯ НА ЭЛЕМЕНТАХ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ 2017
  • Батраков Александр Владимирович
  • Попов Сергей Анатольевич
RU2664784C1
СПОСОБ ОБНАРУЖЕНИЯ СЛАБОТОЧНОЙ ЭЛЕКТРИЧЕСКОЙ ДУГИ В РАДИОЭЛЕКТРОННОЙ АППАРАТУРЕ 2016
  • Батраков Александр Владимирович
  • Попов Сергей Анатольевич
  • Шнайдер Антон Витальевич
RU2633651C1
СПОСОБ НАНЕСЕНИЯ КОМПОЗИЦИОННЫХ ПОКРЫТИЙ 1998
  • Коваль Н.Н.
  • Толкачев В.С.
  • Щанин П.М.
RU2146724C1
СПОСОБ ИСПЫТАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ НА СТОЙКОСТЬ К ЭЛЕКТРОСТАТИЧЕСКИМ РАЗРЯДАМ 1999
  • Анисимов А.В.
  • Новоселов Ю.И.
RU2157545C1
Способ определения стойкости элементов конструкций или радиоэлектронного оборудования низкоорбитальных космических аппаратов к воздействию факторов космического пространства и устройство для его реализации 2022
  • Сочивко Алексей Алексеевич
  • Бобрышев Виктор Геннадьевич
  • Васюшина Анна Владимировна
  • Комяков Александр Владимирович
  • Соланов Евгений Иванович
  • Демидов Алексей Алексеевич
  • Кудашов Евгений Викторович
RU2791950C1
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА ТРАНСФОРМАЦИИ ТОКА, ПРОТЕКАЮЩЕГО ПО ЭЛЕМЕНТАМ ВНЕШНЕЙ ПОВЕРХНОСТИ КОСМИЧЕСКОГО АППАРАТА, В НАПРЯЖЕНИЕ ЭЛЕКТРОМАГНИТНОЙ НАВОДКИ ВО ФРАГМЕНТАХ БОРТОВОЙ КАБЕЛЬНОЙ СЕТИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2008
  • Агапов Василий Васильевич
  • Марченков Кирилл Витальевич
  • Саенко Владимир Степанович
  • Соколов Алексей Борисович
RU2378657C2

Иллюстрации к изобретению RU 2 644 455 C1

Реферат патента 2018 года СПОСОБ ИСПЫТАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ НА СТОЙКОСТЬ К ВТОРИЧНОМУ ДУГООБРАЗОВАНИЮ

Изобретение относится к технике испытаний и может быть использовано при наземной экспериментальной отработке и при приемочных испытаниях радиоэлектронной аппаратуры космических аппаратов на стойкость к инициированию вторичной дуги при работе аппаратуры на напряжениях, превышающих падение потенциала на дуге, в условиях имитации космического пространства, включая плазменное окружение, имитирующее плазму первичного разряда. Техническим результатом данного изобретения является устранение сквозных дефектов сплошности защитного покрытия путем восстановления полимерного покрытия на токоведущих проводниках испытываемой аппаратуры, что ведет к снижению риска повреждения радиоэлектронной аппаратуры в процессе испытания при сохранении достоверности испытаний. Способ испытания радиоэлектронной аппаратуры космических аппаратов на стойкость к вторичному дугообразованию заключается в воздействии плазмой, имитирующей плазму первичного разряда, на испытываемую аппаратуру в активном (рабочем) состоянии под напряжением, превышающим падение потенциала на дуге. Для достижения технического результата непосредственно перед испытанием работающей аппаратуры в плазменном окружении и в едином цикле с испытанием выполняется процедура осаждения полимера в местах нарушения защитного полимерного покрытия, при этом для осаждения полимера используется тот же источник плазмы, который используется для формирования плазменного окружения, имитирующего плазму первичного разряда. 3 з.п. ф-лы, 2 ил.

Формула изобретения RU 2 644 455 C1

1. Способ испытания радиоэлектронной аппаратуры космических аппаратов на стойкость к вторичному дугообразованию, при котором осуществляется воздействие плазмой, имитирующей плазму первичного разряда, на испытываемую аппаратуру в активном (рабочем) состоянии под напряжением, превышающим падение потенциала на дуге, отличающийся тем, что непосредственно перед испытанием аппаратуры в активном состоянии осуществляют воздействие на аппаратуру в неактивном (нерабочем) состоянии одновременно плазмой и реакционным газом, включающим, по крайней мере, один газообразный компонент, способный полимеризоваться в плазме, при этом аппаратура находится под положительным потенциалом смещения относительно потенциала плазмы, и по абсолютной величине не превышающим падение потенциала на дуге.

2. Способ по п. 1, отличающийся тем, что реакционный газ состоит из инертного газа и мономера или димера в газообразном состоянии.

3. Способ по п. 1, отличающийся тем, что при воздействии плазмы на испытываемую аппаратуру, находящуюся в неактивном состоянии, потенциал смещения аппаратуры относительно потенциала плазмы по абсолютной величине превышает первый потенциал ионизации молекул, по крайней мере, одного из компонентов реакционного газа.

4. Способ по п. 1, отличающийся тем, что воздействие на испытываемую аппаратуру в активном и неактивном состоянии осуществляют плазмой в едином цикле от одного источника плазмы.

Документы, цитированные в отчете о поиске Патент 2018 года RU2644455C1

СПОСОБ ОПРЕДЕЛЕНИЯ СТОЙКОСТИ К ДУГООБРАЗОВАНИЮ ЭЛЕМЕНТОВ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ 2013
  • Батраков Александр Владимирович
  • Карлик Константин Витальевич
  • Попов Сергей Анатольевич
RU2539964C1
СПОСОБ ИСПЫТАНИЯ РАДИОЭЛЕКТРОННОЙ АППАРАТУРЫ КОСМИЧЕСКИХ АППАРАТОВ НА СТОЙКОСТЬ К ЭЛЕКТРОСТАТИЧЕСКИМ РАЗРЯДАМ 1999
  • Анисимов А.В.
  • Новоселов Ю.И.
RU2157545C1
СПОСОБ ОТБРАКОВОЧНЫХ ИСПЫТАНИЙ ПОДЛОЖКИ ИЗ ДИЭЛЕКТРИКА ИЛИ ПОЛУПРОВОДНИКА С ТОПОЛОГИЕЙ, ИЗДЕЛИЙ ЭЛЕКТРОННОЙ ТЕХНИКИ НА СТОЙКОСТЬ К ВНЕШНИМ ВОЗДЕЙСТВУЮЩИМ ФАКТОРАМ 1998
  • Борисов Ю.И.
  • Грошев А.С.
  • Юдин Б.Н.
  • Яфраков М.Ф.
RU2138830C1
Устройство для заполнения гидравлического пакера жидкостью 1975
  • Ванифатьев Владимир Иванович
  • Цырин Юрий Завельевич
  • Гайворонский Альберт Анатольевич
  • Дудаладов Анатолий Константинович
  • Галустянц Владилен Аршакович
SU599046A1
US 20160091553 A1, 31.03.2016
US 20080170344 A1, 17.07.2008.

RU 2 644 455 C1

Авторы

Батраков Александр Владимирович

Попов Сергей Анатольевич

Даты

2018-02-12Публикация

2016-12-21Подача