Изобретение относится к области нанотехнологии, медицины, онкологии и пищевой промышленности.
Ранее были известны способы получения микрокапсул.
В пат. 2173140 МПК А61K 009/50, А61K 009/127, Российская Федерация, опубликован 10.09.2001, предложен способ получения кремнийорганолипидных микрокапсул с использованием роторно-кавитационной установки, обладающей высокими сдвиговыми усилиями и мощными гидроакустическими явлениями звукового и ультразвукового диапазона для диспергирования.
Недостатком данного способа является применение специального оборудования - роторно-кавитационной установки, которая обладает ультразвуковым действием, что оказывает влияние на образование микрокапсул и при этом может вызывать побочные реакции в связи с тем, что ультразвук разрушающе действует на полимеры белковой природы, поэтому предложенный способ применим при работе с полимерами синтетического происхождения
В пат. 2359662 МПК А61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00, опубликован 27.06.2009, Российская Федерация, предложен способ получения микрокапсул хлорида натрия с использованием распылительного охлаждения в распылительной градирне Niro при следующих условиях: температура воздуха на входе 10°С, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин. Микрокапсулы по изобретению обладают улучшенной стабильностью и обеспечивают регулируемое и/или пролонгированное высвобождение активного ингредиента.
Недостатками предложенного способа являются длительность процесса и применение специального оборудования, комплекс определенных условий (температура воздуха на входе 10°C, температура воздуха на выходе 28°С, скорость вращения распыляющего барабана 10000 об/мин).
Наиболее близким методом является способ, предложенный в пат. 2134967 МПК A01N 53/00, A01N 25/28, опубликован 27.08.1999, Российская Федерация (1999). В воде диспергируют раствор смеси природных липидов и пиретроидного инсектицида в весовом отношении 2-4:1 в органическом растворителе, что приводит к упрощению способа микрокапсулирования.
Недостатком метода является диспергирование в водной среде, что делает предложенный способ неприменимым для получения микрокапсул водорастворимых препаратов в водорастворимых полимерах.
Техническая задача - упрощение и ускорение процесса получения нанокапсул, уменьшение потерь при получении нанокапсул (увеличение выхода по массе).
Решение технической задачи достигается способом получения нанокапсул АЕКола, отличающимся тем, что в качестве оболочки нанокапсул используется агар-агар, а в качестве ядра - АЕКол при получении нанокапсул методом осаждения нерастворителем с применением 1,2-дихлорэтана в качестве осадителя.
Отличительной особенностью предлагаемого метода является получение нанокапсул методом осаждения нерастворителем с использованием 1,2-дихлорэтана в качестве осадителя, а также использование агар-агара в качестве оболочки частиц и АЕКола - в качестве ядра.
Результатом предлагаемого метода является получение нанокапсул АЕКола.
АЕКол представляет собой смесь ацетата ретинола (витамина А), ацетата α-токоферола (витамина Е) и менадиона (2-метил-1,4-нафтохинона, витамина K) в рафинированном подсолнечном масле.
ПРИМЕР 1. Получение нанокапсул АЕКола, соотношение ядро : оболочка 1:1
1 мл АЕКола добавляют в суспензию 1 г агар-агара в изопропаноле в присутствии 0,01 г препарата Е472с (сложный эфир глицерина с одной-двумя молекулами пищевых жирных кислот и одной-двумя молекулами лимонной кислоты, причем лимонная кислота как трехосновная, может быть этерифицирована другими глицеридами и как оксокислота - другими жирными кислотами. Свободные кислотные группы могут быть нейтрализованы натрием) в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 2 г порошка нанокапсул красноватого цвета. Выход составил 100%.
ПРИМЕР 2. Получение нанокапсул АЕКола, соотношение ядро : оболочка 3:1
3 мл АЕКола добавляют в суспензию 1 г агар-агара в изопропаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул красноватого цвета. Выход составил 100%.
ПРИМЕР 3. Получение нанокапсул АЕКола, соотношение ядро : оболочка 1:3
1 мл АЕКола добавляют в суспензию 3 г агар-агара в изопропаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 4 г порошка нанокапсул красноватого цвета. Выход составил 100%.
ПРИМЕР 4 Получение нанокапсул АЕКола, соотношение ядро : оболочка 1:5
1 мл АЕКола добавляют в суспензию 5 г агар-агара в изопропаноле в присутствии 0,01 г препарата Е472с в качестве поверхностно-активного вещества при перемешивании 1300 об/мин. Далее приливают 10 мл 1,2-дихлорэтана. Полученную суспензию отфильтровывают и сушат при комнатной температуре.
Получено 6 г порошка нанокапсул. Выход составил 100%.
название | год | авторы | номер документа |
---|---|---|---|
Способ получения нанокапсул АЕКола | 2016 |
|
RU2648747C2 |
Способ получения нанокапсул АЕКола | 2016 |
|
RU2640129C1 |
Способ получения нанокапсул семян чиа (Salvia hispanica) в пектине | 2016 |
|
RU2647440C2 |
Способ получения нанокапсул АЕКола | 2016 |
|
RU2642232C2 |
Способ получения нанокапсул АЕКола | 2016 |
|
RU2640128C1 |
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АДАПТОГЕНОВ В АГАР-АГАРЕ | 2015 |
|
RU2603457C1 |
Способ получения нанокапсул АЕКола | 2016 |
|
RU2644725C2 |
Способ получения нанокапсул витаминов группы В | 2016 |
|
RU2646474C1 |
Способ получения нанокапсул спирулина в альгинате натрия | 2016 |
|
RU2648816C2 |
Способ получения нанокапсул ауксинов | 2016 |
|
RU2640488C2 |
Изобретение относится к области нанотехнологии, медицины и пищевой промышленности, а именно к способу получения нанокапсул АЕКола, в которых в качестве оболочки нанокапсул используется агар-агар, а в качестве ядра используется АЕКол, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 3:1, или 1:5. Согласно предложенному способу АЕКол прибавляют в суспензию агар-агара в изопропаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1300 об/мин, после приливают 10 мл 1,2-дихлорэтана, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре. Изобретение обеспечивает упрощение и ускорение процесса получения нанокапсул и уменьшение потерь при получении нанокапсул. 4 пр.
Способ получения нанокапсул АЕКола, характеризующийся тем, что в качестве оболочки нанокапсул используется агар-агар, а в качестве ядра используют АЕКол, при этом АЕКол прибавляют в суспензию агар-агара в изопропаноле в присутствии 0,01 г Е472с в качестве поверхностно-активного вещества, затем перемешивают при 1300 об/мин, после приливают 10 мл 1,2-дихлорэтана, после чего полученную суспензию отфильтровывают и сушат при комнатной температуре, при этом соотношение ядро/оболочка составляет 1:1, или 1:3, или 3:1, или 1:5.
СПОСОБ ПОЛУЧЕНИЯ НАНОКАПСУЛ АНТИБИОТИКОВ В АГАР-АГАРЕ | 2014 |
|
RU2580613C1 |
ЧУЕШОВ В.И | |||
Аппарат для очищения воды при помощи химических реактивов | 1917 |
|
SU2A1 |
Передвижная комнатная печь | 1922 |
|
SU383A1 |
Nagavarma B.V.N | |||
Different techniques for preparation of polymeric nanoparticles / Asian Journal Pharm Clin Res, 2012, V.5, N.3, pp.16-23 | |||
Солодовник В.Д | |||
Микрокапсулирование | |||
М.: "Химия", 1980, 216 c. |
Авторы
Даты
2018-03-15—Публикация
2016-08-15—Подача