Конструкционная термостойкая боросодержащая композиция и способ её изготовления Российский патент 2018 года по МПК C08L61/10 C08K3/16 C08K3/38 

Описание патента на изобретение RU2650140C1

Изобретение относится к области композиционных материалов, содержащих карбид бора, и предназначено для изготовления конструкционных элементов изделий для защиты от тепловых нейтронов.

Известна полимерная композиция для радиационной защиты электронных приборов. Данная композиция содержит полимерное связующее, литий и бор в качестве экранирующих наполнителей в составе соединения тетрагидридобората лития капсулированного при следующем соотношении ингредиентов, мас.%: тетрагидридоборат лития - не более 5; полиэтилен и/или полипропилен - остальное. Все компоненты предлагаемой полимерной композиции были подвергнуты смешению и отверждению по заданному технологическому циклу. Первоначально брали порошкообразный полипропилен и смешивали с порошком капсулированного тетрагидридобората лития в течение 1 часа. Полученную смесь в среде, исключающей взаимодействие с агрессивными атмосферными факторами, подвергали формованию под давлением при повышенной температуре. Патент на изобретение RU 2530002, МПК G21F 1/10, G21F 1/08, 16.11.2014.

Недостатками данной композиции являются: низкая эффективность экранирования относительно Н2O, равная 0,88, невозможность изготовления конструкционных деталей сложной геометрической формы, низкая теплостойкость композиции, определяемая температурой плавления полипропилена, которая не превышает 160-165°С.

Известна боросодержащая композиция, применяемая для биологической защиты от нейтронных излучений. Патент на изобретение RU 2196788, МПК C08J 3/20, C08L 23/12, С08K 3/20, С08K 3/38, 20.01.2003. Боросодержащая композиция содержит полиолефиновый полимер (полипропилен) в качестве связующего и борный ангидрид при следующем соотношении ингридиентов, мас.%: борный ангидрид - 15, полипропилен - 85. Гранулы борного ангидрида перед смешиванием подвергали измельчению до порошкообразного состояния дисперсностью 400 мкм, смешивали с полипропиленом в барабанном смесителе в течение 2-3 ч, а затем экструдировали при температуре 200-220°С в пресс-форму и прессовали при удельном давлении 400-500 кг/см2. Недостатками данной композиции являются низкая теплостойкость композиции, определяемая температурой плавления полипропилена, которая не превышает 160-165°С, а также гигроскопичность композиции, составляющая 0,1%. Недостатком способа изготовления является необходимость предварительного дробления ангидрида бора до дисперсности 400 мкм, возможность попадания частиц материала барабанного смесителя в состав композиции и сложность обеспечения высокой точности геометрических размеров заготовки.

Задачей изобретений является создание композиции с повышенной теплостойкостью и термостойкостью, отсутствием гигроскопичности, нерастворимой в агрессивных средах, обеспечивающей ослабление фона по тепловым нейтронам и изготовление конструкционных элементов изделий с высокой механической прочностью и работающих в широком диапазоне температур.

Техническим результатом композиции является повышение защиты от тепловых нейтронов и возможность создания конструкционных элементов изделий с высокой механической прочностью и работающих в широком диапазоне температур.

Техническим результатом способа является снижение трудоемкости изготовления композиции и повышение ее качества.

Технический результат достигается за счет того, что конструкционная термостойкая боросодержащая композиция состоит из фенолоформальдегидной смолы новолачного типа, гексаметилентетрамина и карбида бора в следующем соотношении, мас.%:

фенолоформальдегидная смола 20-28; гексаметилентетрамин 1,8-2,8; карбид бора остальное.

Технический результат достигается также за счет применения способа изготовления конструкционной термостойкой боросодержащей композиции, характеризующийся тем, что в стакан помещают порошки компонентов в указанной выше пропорции и шары из фторопласта диаметром 16-20 мм, стакан помещают в установку планетарного типа и смешивают компоненты до гомогенного состояния в течение не менее 15 минут при соотношении скоростей вращения диска и стакана 2:1, при этом диск вращается по часовой, а стакан против часовой стрелки.

На фиг. 1 представлена расчетная модель эффективности защиты от тепловых нейтронов полученной композиции материала.

На фиг. 2 представлена зависимость коэффициента ослабления от толщины фильтра: кривая А - по числу тепловых нейтронов, кривая Б - по числу событий в сцинтилляторе.

На фиг. 3 представлен пример фильтра, изготовленного из полученной композиции.

Для изготовления боросодержащей композиции берется 20-28 массовых частей порошка новолачной фенолоформальдегидной смолы, 1,8-2,8 массовых частей гексаметилентетрамина, остальное - порошок карбида бора с размером зерна 14-40 мкм (зернистость М14-М40 согласно ГОСТ 3647-80). Затем компоненты гомогенно смешиваются в установке планетарного типа в течение 15 мин при соотношении скоростей вращения диска и стакана с компонентами композиции 2:1 и вращением диска по часовой, а стакана - против часовой стрелки. Для гарантированного качественного перемешивания составных частей композиции используются шары из фторопласта диаметром 16-20 мм: использование шаров из фторопласта при перемешивании полностью исключает попадание материала стаканов установки в композицию.

Фильтры из полученной композиции изготавливаются прессованием. Полученную смесь загружают в пресс-форму с учетом объема прессуемого изделия и прессуют на вертикальном прессе под давлением, обеспечивающим фиксирование заданного объема изделия при нагреве пресс-формы до 175-185°С и выдержке при данной температуре не менее 15 мин. Далее пресс-форму с композицией охлаждают до температуры не более 100°С вне пресса и производят выпрессовывание готового изделия из композиции.

Для изготовления диска из предлагаемой композиции диаметром 52 мм с допуском на диаметр 0,190 мм и толщиной 3 мм с допуском на толщину - 0,06 мм брали компоненты в соответствии с таблицей с учетом объема изделия, помещали в стакан планетарной машины вместе с шарами из фторопласта диаметром 20 мм, смешивали до гомогенного состояния при соотношении скоростей вращения диска и стакана планетарной машины 2:1 в течение 15 мин; затем полученную смесь загрузили в пресс-форму, установили пресс-форму на пресс, нагрели пресс-форму до 180°С и прессовали 15 минут, затем сняли давление пресса, охладили пресс-форму при нормальных климатических условиях до температуры 100°С и выпрессовали диск (фиг. 3). Геометрические размеры диска из композиции находились в пределах полей допусков на размеры.

Результаты механических испытаний образцов приведены в таблице. Твердость по Роквеллу определялась на твердомере ТК-2М шариком диаметром 5 мм при нагрузке 588 Н. Прочность на сжатие определялась на образцах из предлагаемой композиции диаметром 20 мм на испытательной машине МИРС.

Анализ результатов испытаний показывает, что для изготовления изделий из предлагаемой композиции с высокими механическими свойствами без дефектов оптимальными являются соотношения компонентов композиции, указанные в примерах 2-4. Увеличение количества фенолформальдегидной смолы приводит к образованию пористости изделия и, как следствие, снижению его прочностных свойств. Увеличение карбида бора приводит к недостатку количества фенолформальдегидной смолы, необходимой для его смачивания, что приводит к появлению трещин в изделии из композиции и снижению прочностных свойств.

Эффективность защиты от тепловых нейтронов полученной композиции проверяли расчетным способом. Расчет проводили при условиях, обеспечивающих наименьший коэффициент ослабления, а именно (фиг. 1):

- спектр нейтронов соответствует допустимой максимальной температуре;

- поток тепловых нейтронов падает перпендикулярно поверхности экрана из предлагаемой композиции.

Предполагали, что поток тепловых нейтронов имеет максвелловское распределение (средняя энергия 38,3 мэВ),

где Е - энергия нейтрона,

С - нормировочная константа для выполнения условия;

а=38,3 мэВ.

Предполагали, что импульс на детекторе производится при неупругих взаимодействиях нейтронов с материалом детектора. В тепловой области сечение неупругих взаимодействий пропорционально Е-0,5, поэтому в расчете приняли, что количество импульсов детектора пропорционально, что было определено как поток через поверхность с дозовым коэффициентом, равным Е-0,5.

В результате расчета методом Монте-Карло была получена зависимость коэффициента ослабления от толщины фильтра (фиг. 2).

В результате проведенного расчета и испытаний можно сделать вывод, что экран из предлагаемой композиции обеспечивает ослабление фона по тепловым нейтронам в 3000 раз при толщине 3 мм при объемной плотности бора 1667 мг/см3, эффективность экранирования относительно Н2O составляет 2122.

Предлагаемая композиция отличается высокой теплостойкостью до 300-350°С, способностью выдерживать локальный нагрев до 700°С, нерастворимостью в агрессивных средах, отсутствием гигроскопичности.

Теплостойкость проверяли, поместив диски из предлагаемой композиции в термокамеру и нагрев их до темапературы 350°С. После выдержки дисков в течение 1 часа не произошло потери формы и изменения геометрических размеров дисков из предлагаемой композиции.

Предлагаемая композиция с заявляемым диапазоном массовых соотношений компонентов обеспечивает возможность изготовления конструкционных элементов изделий с высокой точностью геометрических размеров, высокой механической прочностью и работающих в широком диапазоне температур.

Прессование с учетом объема готового изделия, а также изготовление изделия из композиции предложенным способом позволяют снизить трудоемкость изготовления за счет отсутствия необходимости предварительного дробления карбида бора, повысить качество приготавливаемой смеси за счет использования шаров из фторопласта. Прессование по объему, а не по давлению позволяет получать детали различной сложности с высокой точностью геометрических размеров не хуже 11 квалитета согласно ГОСТ 25346-89, которые можно в дальнейшем подвергать механической обработке.

Похожие патенты RU2650140C1

название год авторы номер документа
РАДИАЦИОННО-ЗАЩИТНЫЙ МАТЕРИАЛ НА ПОЛИМЕРНОЙ ОСНОВЕ С ПОВЫШЕННЫМИ РЕНТГЕНОЗАЩИТНЫМИ И НЕЙТРОНОЗАЩИТНЫМИ СВОЙСТВАМИ 2014
  • Калошкин Сергей Дмитриевич
  • Горшенков Михаил Владимирович
  • Чердынцев Виктор Викторович
  • Гульбин Виктор Николаевич
  • Бойков Андрей Анатольевич
RU2561989C1
СПОСОБ ПОЛУЧЕНИЯ РАДИАЦИОННО-ЗАЩИТНОГО МАТЕРИАЛА НА ОСНОВЕ СВЕРХВЫСОКОМОЛЕКУЛЯРНОГО ПОЛИЭТИЛЕНА С ПОВЫШЕННЫМИ РАДИАЦИОННО-ЗАЩИТНЫМИ СВОЙСТВАМИ 2014
  • Калошкин Сергей Дмитриевич
  • Горшенков Михаил Владимирович
  • Чердынцев Виктор Викторович
  • Гульбин Виктор Николаевич
  • Бойков Андрей Анатольевич
RU2563650C1
МАТЕРИАЛ НА ПОЛИМЕРНОЙ ОСНОВЕ ДЛЯ КОМБИНИРОВАННОЙ РАДИО- И РАДИАЦИОННОЙ ЗАЩИТЫ 2015
  • Бойков Андрей Анатольевич
  • Чердынцев Виктор Викторович
  • Гульбин Виктор Николаевич
RU2605696C1
СПОСОБ ПРИГОТОВЛЕНИЯ ВЫСОКОНАПОЛНЕННОЙ БОРОСОДЕРЖАЩЕЙ КОМПОЗИЦИИ 2001
  • Ермаков В.И.
  • Нурутдинов М.Х.
  • Плешков И.М.
  • Горшенин В.Б.
  • Цивилин В.М.
RU2197507C2
СПОСОБ ПОЛУЧЕНИЯ ПОЛИЭТИЛЕНОВОЙ КОМПОЗИЦИИ 1992
  • Ермаков В.И.
  • Крынский В.Н.
  • Кревский В.В.
  • Тимков Н.Ф.
  • Любавин В.А.
  • Новиков А.В.
RU2050380C1
СПОСОБ ИЗГОТОВЛЕНИЯ ДВУХСЛОЙНОЙ СБОРКИ 2003
  • Ермаков В.И.
  • Нурутдинов М.Х.
  • Плешков И.М.
  • Кондрашов И.В.
  • Суставов В.А.
RU2229982C1
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАЩИТЫ ОТ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2022
  • Павленко Вячеслав Иванович
  • Черкашина Наталья Игоревна
  • Романюк Дмитрий Сергеевич
  • Шуршаков Вячеслав Александрович
  • Сидельников Роман Владимирович
  • Домарев Семен Николаевич
RU2799773C1
Композиционный материал на основе сверхвысокомолекулярного полиэтилена для комбинированной радио и радиационной защиты, наполненный пентаборидом дивольфрама и техническим углеродом 2016
  • Бойков Андрей Анатольевич
  • Чердынцев Виктор Викторович
  • Гульбин Виктор Николаевич
RU2632932C1
СОСТАВ ДЛЯ ИЗГОТОВЛЕНИЯ ПРЕССОВОЧНОЙ КОМПОЗИЦИИ 2000
  • Краснов Л.Л.
  • Долматовский М.Г.
  • Масенкис М.А.
  • Усачев С.А.
  • Дунаев И.П.
  • Искольдский В.И.
RU2198189C2
СПОСОБ ПРИГОТОВЛЕНИЯ ВЫСОКОНАПОЛНЕННОЙ ГРАФИТОСОДЕРЖАЩЕЙ КОМПОЗИЦИИ 2002
  • Ермаков В.И.
  • Нурутдинов М.Х.
  • Плешков И.М.
  • Салюков В.Н.
  • Скурыгин Л.И.
  • Суставов В.А.
RU2217448C2

Иллюстрации к изобретению RU 2 650 140 C1

Реферат патента 2018 года Конструкционная термостойкая боросодержащая композиция и способ её изготовления

Изобретение относится к области композиционных материалов, содержащих карбид бора, и предназначено для изготовления конструкционных элементов изделий для защиты от тепловых нейтронов. Композиция содержит фенолформальдегидную смолу новолачного типа в количестве 20-28 мас.%, гексаметилентетрамин в количестве 1,8-2,8 мас.% и карбид бора остальное. Технический результат заключается в снижении трудоемкости изготовления композиции и повышении ее качества. 2 н.п. ф-лы, 3 ил., 1 табл., 5 пр.

Формула изобретения RU 2 650 140 C1

1. Конструкционная термостойкая боросодержащая композиция, состоящая из фенолформальдегидной смолы новолачного типа, гексаметилентетрамин и карбида бора в следующем соотношении, мас.%:

фенолформальдегидная смола 20-28 гексаметилентетрамин 1,8-2,8 карбид бора остальное.

2. Способ изготовления конструкционной термостойкой боросодержащей композиции, характеризующийся тем, что в стакан помещают шары из фторопласта диаметром 16-20 мм и порошки компонентов в следующем соотношении, мас.%:

фенолформальдегидная смола 20-28 гексаметилентетрамин 1,8-2,8 карбид бора: порошок с размером зерна 14-40 мкм остальное,

при этом стакан помещают в установку планетарного типа, смешивают компоненты до гомогенного состояния в течение не менее 15 мин при соотношении скоростей вращения диска и стакана 2:1, при этом диск вращается по часовой, а стакан против часовой стрелки.

Документы, цитированные в отчете о поиске Патент 2018 года RU2650140C1

СПОСОБ ПРИГОТОВЛЕНИЯ БОРОСОДЕРЖАЩЕЙ КОМПОЗИЦИИ 2000
  • Поляков Л.А.
  • Дудочкин Е.К.
  • Ермаков В.И.
  • Плешков И.М.
  • Монастырев Ю.А.
RU2196788C2
Устройство для приготовления смеси жидких материалов 1985
  • Репин Александр Леонидович
SU1247441A1
ПОЛИМЕРНАЯ КОМПОЗИЦИЯ ДЛЯ РАДИАЦИОННОЙ ЗАЩИТЫ ЭЛЕКТРОННЫХ ПРИБОРОВ 2012
  • Демин Олег Вячеславович
  • Грачков Александр Владимирович
RU2530002C2
Состав для борирования отливок из стали 1989
  • Астащенко Владимир Иванович
  • Янцен Гарри Иванович
  • Хальфин Фанис Бареевич
  • Мулюков Талгат Фаритович
  • Сергеева Елена Ивановна
  • Янцен Андрей Гарриевич
SU1694691A1

RU 2 650 140 C1

Авторы

Брагин Сергей Иванович

Копылов Сергей Иванович

Шоленинов Сергей Эдуардович

Злочевский Гарольд Давидович

Панкова Татьяна Николаевна

Даты

2018-04-09Публикация

2017-05-25Подача