СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОГО КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАПРЯЖЕНИЙ ПРИ ПОПЕРЕЧНОМ СДВИГЕ ТВЕРДОГО ТЕЛА Российский патент 2018 года по МПК G01N3/24 

Описание патента на изобретение RU2650613C1

Изобретение относится к исследованию прочностных свойств материалов, а именно к способам определения критического коэффициента интенсивности напряжений при поперечном сдвиге твердого тела, и может быть использовано при решении прикладных задач механики резания.

Наиболее близким аналогом является способ определения вязкости скольжения твердого тела [1], заключающийся в том, что используют образец в форме параллелепипеда, прикладывают к нему сдвигающую нагрузку, которую создают продольным резанием образца с помощью прямоугольного резца (плоского индентора), ширина и высота передней грани которого превышает соответственно ширину в и толщину а срезаемого слоя. Измеряют максимальную силу резания, и критический коэффициент интенсивности напряжений КПс определяют по следующей зависимости:

где Рсд.макс = N - максимальная сила резания.

В данном способе используют прямоугольный резец с передним углом равным нулю и считают, что передняя поверхность резца действует на срезаемый слой только с нормальной силой равной N, которая является силой резания и одновременно сдвигающей нагрузкой для развития трещины сдвига ι [2], как и показано на фиг. 1.

Принятая схема приложения нагрузки имеет недостатки, заключающиеся в том, что она не учитывает факт наличия трения при перемещении стружки по передней поверхности резца и то, что с началом резания, когда начинается процесс образования стружки, на поверхности резца появляется новая сила - сила трения. Это существенно меняет картину нагружения. Схема сил, приложенных к резцу, в этом случае имеет следующий вид (фиг. 2).

При этом допускается, что резание осуществляется острым резцом, тогда силы трения, действующие на задней поверхности инструмента, пренебрежимо малы по сравнению с силами на передней поверхности и ими можно пренебречь.

На стружку действует передняя поверхность с силой резания , где N - сила нормального давления передней поверхности резца на срезаемый слой; F=μ⋅N - сила трения на передней поверхности резца, где μ - коэффициент трения стружки и резца. Сила резания R наклонена к поверхности резания под углом ω, который является углом действия силы [3]. Тем самым не выполняется одно из условий создания деформации сдвига - сдвигающая нагрузка должна быть приложена параллельно поверхности резания. Здесь же только часть силы резания создает сдвиговую деформацию. Невыполнение данного условия снижает точность определения коэффициента интенсивности напряжений.

Для оценки точности определения коэффициента интенсивности напряжений данным способом рассмотрим схему резания с позиции вызываемых силой резания деформаций.

Сила резания R разложена на две составляющие по осям координат, которые направлены параллельно и перпендикулярно вектору скорости резания ν (поверхности резания) и, как правило, именно эти силы измеряются динамометром в опытах. С другой стороны, эти составляющие силы резания R по характеру вызываемых деформаций можно охарактеризовать следующим образом: сдвигающая сила Pzсд=R⋅cosω, действующая параллельно плоскости трещины, вызывает рост трещины; сжимающая сила Русж,=R⋅sinω направлена перпендикулярно трещине и стремится захлопнуть, сомкнуть трещину.

Напряженно-деформированное состояние (НДС) в окрестности вершины трещины, используя принцип суперпозиции, можно представить как сумму НДС поперечного сдвига и НДС сжатия, что графически представлено на фиг. 3.

Как видно из фиг. 3, процесс резания резцом с передним углом равным нулю имеет некоторые специфические особенности - часть приложенной нагрузки "захлопывает" трещину, и только оставшаяся часть сдвигает трещину.

Разделение общей задачи на частные можно представить и так (фиг. 4).

Тогда коэффициент интенсивности напряжений КII, определяющий НДС в вершине закрывающейся трещины согласно принципу суперпозиции (фиг. 4), равен

где ƒ - коэффициент трения скольжения между берегами трещины.

Таким образом, коэффициент интенсивности напряжений КII при резании с резцом с передним углом равным нулю получается заниженным.

Цель изобретения - повышение точности определения критического коэффициента интенсивности напряжений при поперечном сдвиге твердого тела за счет придания силе резания положения с углом действия равным нулю.

Поставленная цель достигается тем, что в способе определения критического коэффициента интенсивности напряжений при поперечном сдвиге твердого тела, включающем образец в форме параллелепипеда, к которому прикладывают сдвигающую нагрузку, и которую создают продольным резанием образца с помощью плоского резца, ширина и высота, передней грани которого превышает соответственно ширину в и толщину а срезаемого слоя, а критический коэффициент интенсивности напряжений КIIс определяют по следующей зависимости:

где Рсд.макс - максимальная сила резания,

согласно изобретению для придания силе резания положения с углом действия равным нулю используют резец с передним углом, равным углу трения для данной пары «резец - обрабатываемый материал».

Данное решение следует из анализа схемы резания на фиг. 5.

Характер нагружения формирующейся стружки можно оценивать углом действия ω силы резания R и ее величиной.

Из фиг. 5 следует, что поперечный сдвиг происходит при угле действия равным нулю ω=0. Это условие можно записать еще так

где ω - угол действия; δ - угол резания; Ψ - угол трения.

Учитывая, что δ=90°-γ, соотношение (1) запишем в виде 90°-γ=90°-Ψ, откуда следует условие поперечного сдвига

т.е. чистый поперечный сдвиг при резании возможен тогда, когда передний угол резца равен углу трения пары «резец - обрабатываемый материал».

При этом сила резания равна сдвигающей силе R=PZсд. Тогда коэффициент интенсивности напряжений КII равен: КIIIIсд).

Способ осуществляется следующим образом. К образцу из исследуемого материала в форме параллелепипеда прикладывают сдвигающую нагрузку, параллельную поверхности резания и вектору скорости резания, и которая создается при продольном резании резцом с передним углом, равным углу трения для данной пары «резец - обрабатываемый материал». Ширина и высота передней грани резца превышают соответственно ширину в и толщину а срезаемого слоя, что исключает краевые эффекты. В процессе резания с помощью динамометра измеряют максимальную силу резания, и критический коэффициент интенсивности напряжений КIIс определяют по следующей зависимости:

где Рсд.макс - максимальная сила резания.

Проведенные численные эксперименты, которые проводились при одинаковых условиях, показали, что коэффициент интенсивности напряжений КIIс по заявленному способу превышает значение коэффициента интенсивности напряжений КIIс по прототипу и является наиболее близким к значению коэффициента интенсивности напряжений КIIс эталонного материала с известным значением коэффициента интенсивности напряжений КIIс.

Источники информации

1. А.с. 1357770 СССР, МКИ G01N 3/08. Способ определения вязкости скольжения твердого тела. / Г.П. Черепанов, М.И. Ворожцов, Е.Н. Чижов, А.Г. Черепанов - заявл. 18.07.86; опубл. 07.12.87, Бюл. №45.

2. Черепанов Г.П., Ворожцов М.И., Эйгелес P.M. О резании горных пород. //Доклады АН СССР. - 1987. - Том 296, №1. - С. 49-53.

3. Бобров В.Ф. Основы теории резания металлов. – М.: Машиностроение, 1975. - 344 с.

Похожие патенты RU2650613C1

название год авторы номер документа
Способ чистовой обработки и резец для его осуществления 1990
  • Мосичев Владимир Ефимович
SU1756018A1
Рыхлитель торфа 1985
  • Козлов Юрий Михайлович
  • Карцев Василий Васильевич
  • Михайлов Александр Викторович
SU1344904A1
СМЕННАЯ РЕЖУЩАЯ ПЛАСТИНА 2008
  • Михайлов Станислав Васильевич
  • Олейник Анатолий Павлович
RU2364475C1
Буровое долото с резцами PDC 2019
  • Богомолов Родион Михайлович
RU2735319C1
Стружколомающая сменная режущая пластина с переменным передним углом 2017
  • Труфанов Геннадий Гаврилович
  • Артамонов Евгений Владимирович
  • Васильев Дмитрий Вячеславович
RU2665858C1
Вибрационный резец для обработки железнодорожных колесных пар и режущая пластина 2018
  • Гоц Эдуард Михайлович
  • Атажанов Эдуард Сергеевич
  • Кичатов Сергей Михайлович
  • Носов Михаил Петрович
  • Гоц Инна Эдуардовна
  • Ратт Орр
RU2715923C1
Способ изменения угла сдвига при резании 1990
  • Чернавский Феликс Григорьевич
SU1818576A1
Круглый резец 1983
  • Денисенко Владимир Иванович
SU1199467A1
Способ вращательного бурения шпуров и скважин 1979
  • Якунин Михаил Федорович
SU912922A1
Способ срезания поверхностного слоя с длинномерных изделий 1988
  • Киселев Александр Петрович
  • Шумилин Игорь Михайлович
SU1655671A1

Иллюстрации к изобретению RU 2 650 613 C1

Реферат патента 2018 года СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОГО КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАПРЯЖЕНИЙ ПРИ ПОПЕРЕЧНОМ СДВИГЕ ТВЕРДОГО ТЕЛА

Изобретение относится к способам определения критического коэффициента интенсивности напряжений при поперечном сдвиге, которое реализуется при резании твердого материала. Сущность: к образцу в форме параллелепипеда прикладывают сдвигающую нагрузку, которую создают продольным резанием образца резцом с передним углом, равным углу трения для данной пары «резец - обрабатываемый материал», ширина и высота передней грани которого превышает соответственно ширину в и толщину а срезаемого слоя, а критический коэффициент интенсивности напряжений КIIc определяют по следующей зависимости:

где Рсд.макс - максимальная сила резания. Технический результат: возможность повысить точность определения критического коэффициента интенсивности напряжений при поперечном сдвиге за счет придания силе резания - сдвигающей нагрузке положения с углом действия равным нулю. 5 ил.

Формула изобретения RU 2 650 613 C1

Способ определения критического коэффициента интенсивности напряжений при поперечном сдвиге твердого тела, включающий образец в форме параллелепипеда, к которому прикладывают сдвигающую нагрузку, и которую создают продольным резанием образца с помощью плоского резца, ширина и высота передней грани которого превышает соответственно ширину в и толщину а срезаемого слоя, а критический коэффициент интенсивности напряжений KIIc определяют по следующей зависимости:

где - максимальная сила резания,

отличающийся тем, что для придания силе резания положения с углом действия равным нулю используют резец с передним углом, равным углу трения для данной пары «резец - обрабатываемый материал».

Документы, цитированные в отчете о поиске Патент 2018 года RU2650613C1

Способ удаления газов из питательной для паровых котлов воды 1927
  • Варганов В.А.
SU16193A1
СПОСОБ ОПРЕДЕЛЕНИЯ КРИТИЧЕСКОГО КОЭФФИЦИЕНТА ИНТЕНСИВНОСТИ НАПРЯЖЕНИЯ В ИЗДЕЛИИ 2006
  • Варламов Андрей Аркадьевич
  • Круциляк Юрий Михайлович
  • Круциляк Михаил Михайлович
RU2324916C1
Способ определения критического коэффициента интенсивности напряжений при продольном сдвиге 1981
  • Смирнов Валерий Иринархович
SU1002890A1
JP 2009063556 A, 26.03.2009.

RU 2 650 613 C1

Авторы

Апажев Аслан Каральбиевич

Мисиров Мухамад Хусаинович

Габаев Алий Халисович

Мисирова Аминат Мухамадовна

Даты

2018-04-16Публикация

2017-03-17Подача