СПОСОБ ТЕРМИЧЕСКОГО АНАЛИЗА ПОЛИМЕРОВ Российский патент 2018 года по МПК G01N25/02 G01N25/58 G01N27/14 G01N33/44 

Описание патента на изобретение RU2653153C1

Предлагаемое изобретение относится к области термических методов анализа полимеров и может быть использовано для анализа электропроводности полимеров от условий его нагрева.

Из уровня техники известен способ термического анализа - способ испытания на электропроводность полимерных композиций [Авторское свидетельство SU 1150528 A, G01N 27/02. Способ испытания на электропроводность полимерных композиций, 11.07.1983].

Согласно данному способу исследуемый образец полимера помещают между двумя электродами, предназначенными для измерения удельного объемного электрического сопротивления. В ходе анализа полимер расплавляют, подвергают сдвиговому напряжению и измеряют удельное объемное электрическое сопротивление.

Недостатком данного способа является перевод исследуемой полимерной композиции в плавкое состояние в диапазоне температур выше точки плавления, но ниже температуры разложения полимера. Способ применяется только к полимерам в расплавленном состоянии.

Наиболее близким по технической сущности к предлагаемому изобретению является способ термического анализа - дифференциально-термический анализ (ДТА) [Альмяшев В.И., Гусаров В.В. Термические методы анализа: Учеб. пособие / А 57. СПбГЭТУ (ЛЭТИ). - СПб., 1999. - 40 с.], который основан на регистрации разности температур исследуемого вещества и инертного образца сравнения при их одновременном нагревании.

Согласно данному способу предварительно взвешенный образец исследуемого вещества и инертный образец сравнения помещают в отдельные платиновые тигли в электропечи. Печь заполняют инертным газом для предотвращения окисления или иных нежелательных реакций. Печь разогревают до 900°C. Во время нагрева в образце могут протекать процессы, сопровождающиеся поглощением или выделением тепла, благодаря чему температуры образца и эталона начинают различаться. К таким процессам относятся перестройка кристаллической структуры в результате плавления, испарение, реакции дегидратации, диссоциации, окисление или восстановление. Результатом анализа являются так называемые ДТА-кривые - зависимости разности температур исследуемого вещества и образца сравнения от времени. При постоянном нагревании превращение в исследуемом веществе сопровождается появлением пика или впадины на кривой ДТА. Если в веществе не происходит никаких структурных изменений, то кривая нагревания имеет вид прямой. В случае протекания структурных изменений ход кривой нагревания отклоняется от прямолинейного направления вверх или вниз. Отклонение носит временный характер и прекращается по окончании процессов нагрева. Данный способ позволяет определять структурные изменения в полимере в зависимости от воздействующей температуры, которые проявляются в виде экстремумов на кривой ДТА.

Техническим результатом изобретения является получение заданной удельной электропроводности за счет выявления структурных изменений в полимере в процессе нагрева в низкотемпературном интервале.

Указанный технический результат достигается тем, что в способе термического анализа полимеров, включающем нагрев исходного образца полимера в инертной среде, определение и анализ его свойства за счет структурных изменений в полимере, проводят предварительную термическую обработку исходного образца полимера при температуре, лежащей в низкотемпературном интервале: начиная от 25°C до температуры термодеструкции образца полимера, и выдерживают образец полимера до 30 минут при этой температуре, переводят предварительно термически обработанный образец полимера в электропроводящее состояние путем его карбонизации до 900°C, охлаждают до 25°C, определяют удельную электропроводность карбонизованного образца полимера, проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C, строят график зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки из низкотемпературного интервала и по характеру зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки в низкотемпературном интервале судят о заданной удельной электропроводности карбонизованного полимера.

Существенным отличием заявляемого способа термического анализа полимеров является то, что проводят предварительную термическую обработку исходного образца полимера при температуре, лежащей в низкотемпературном интервале, начиная от 25°C до температуры термодеструкции образца полимера, и выдерживают образец полимера до 30 минут при этой температуре, переводят предварительно термически обработанный образец полимера в электропроводящее состояние путем его карбонизации до 900°C, охлаждают до 25°C, определяют удельную электропроводность карбонизованного образца полимера, проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C, строят график зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки из низкотемпературного интервала, и по характеру зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки в низкотемпературном интервале судят о заданной удельной электропроводности карбонизованного полимера

В результате предварительной термической обработки полимера в низкотемпературном интервале, начиная от 25°C до температуры термодеструкции, в среде азота при выдержке полимера до 30 мин происходят структурные изменения в полимере, характерные для заданной температуры предварительной термической обработки, которые затем проявляются после перевода полимера в электропроводящее состояние путем его карбонизации в виде появления электропроводности. Причем значение удельной электропроводности зависит от температуры предварительной термической обработки. Заявленных признаков с получением указанного выше результата в известном уровне техники не обнаружено, поэтому заявляемый способ термического анализа полимеров обладает существенным отличием.

Ниже представлено описание чертежей, поясняющее сущность изобретения.

На фиг. 1 представлен график зависимости удельной электропроводности карбонизованного полимера из полиоксадиазола (ПОД) от температуры предварительной термической обработки при времени выдержки 30 мин.

На фиг. 2 представлен график зависимости удельной электропроводности карбонизованного полимера из полиоксадиазола от температуры предварительной термической обработки при времени выдержки 10 мин.

На фиг. 3 представлен график зависимости удельной электропроводности карбонизованного полимера из полиакрилонитрила (ПАН) от температуры предварительной термической обработки при времени выдержки 30 мин.

На фиг. 4 представлен график зависимости удельной электропроводности карбонизованного полимера из полиамидобензимидазола (ПАБИ) от температуры предварительной термической обработки при времени выдержки 30 мин.

Исходный полимер нагревают в среде азота от 25°C до первой температуры предварительной термической обработки (T1) из низкотемпературного интервала, начиная от 25°C до температуры термодеструкции образца полимера, и выдерживают до 30 мин. Верхняя граница низкотемпературного интервала соответствует температуре термодеструкции как составной части процесса карбонизации и перевода полимера в электропроводящее состояние. Экспериментально обнаружено, что 30 мин выдержки достаточно, чтобы закончились структурные изменения, которые проявляются в виде заданного значения удельной электропроводности после перевода полимера в электропроводящее состояние. При этом выдержка более 30 мин технологически не целесообразна, т.к. структурные изменения закончились при времени выдержки до 30 мин. Затем продолжают нагрев до температуры карбонизации, равной 900°C, с целью перевода образца полимера в электропроводящее состояние, естественным образом охлаждают образец полимера до 25°C. Из практики известно, что при температуре, равной 900°C и выше, заканчивается формирование углеродной турбостратной структуры при карбонизации и карбонизованный полимер (например, полиоксадиазол, полиакрилонитрил и другие) заведомо переходит в электропроводящее состояние. Нагрев свыше 900°C технологически не целесообразен в данном случае (для организации анализа), так как полимер уже находится в электропроводящем состоянии, достаточном для проведения термического анализа. После этого определяют удельную электропроводность карбонизованного образца полимера, которая по определению является величиной, обратной к электрическому сопротивлению, которое измеряют омметром модели GOM-802 фирмы GW INSTEK. При этом под удельной электропроводностью понимают электропроводность единицы объема образца полимера. Таким образом получают значение удельной электропроводности карбонизованного образца полимера при температуре предварительной термической обработки, равной T1. Затем проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C. Экспериментально обнаружено, что выбор шага в 5°C технологически достаточен для получения заданного технического результата, так как из практики известно, что структура полимера является суперпозицией аморфных и кристаллических фаз, а для аморфной фазы нет определенной температуры плавления и кристаллизации и в целом для всего полимера наблюдаются плавные изменения структуры при плавном изменении фазовых состояний и, соответственно, плавное изменение удельной электропроводности.

После этого проводят построение зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки.

Затем, исходя из характера зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки в низкотемпературном интервале, судят о заданной удельной электропроводности карбонизованного полимера.

Пример 1. Исходный полимер из полиоксадиазола нагревают от 20-22°C до первой температуры предварительной термической обработки (T1=25°C) из низкотемпературного интервала, начиная от 25°C до 475°C, выдерживают 30 мин. Температура термодеструкции полиоксадиазола равна 477°C, а анализ проводится от 25°C с шагом 5°C, поэтому верхняя граница низкотемпературного интервала ограничивается температурой в 475°C. Затем продолжают нагрев до температуры карбонизации, равной 900°C, с целью перевода материала в электропроводящее состояние и естественным образом охлаждают до 25°C. После этого определяют удельную электропроводность карбонизованного образца полимера. Таким образом получают значение удельной электропроводности карбонизованного образца полимера при температуре предварительной термической обработки, равной T1. Затем проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C. После этого проводят построение зависимости удельной электропроводности карбонизованных образцов полимера от температур предварительной термической обработки (фиг. 1).

На фиг. 1 показана зависимость удельной электропроводности карбонизованного полимера из полиоксадиазола от температуры предварительной термической обработки при времени выдержки 30 мин.

Анализ фиг. 1 показывает, что в интервалах температур предварительной термической обработки от 265 до 275°C и от 425 до 435°C наблюдаются максимальные значения удельной электропроводности. В интервалах температур от 240 до 250°C и от 300 до 320°C наблюдаются минимальные значения удельной электропроводности.

Пример 2. Исходный полимер из полиоксадиазола нагревают от 20 -22°C до первой температуры предварительной термической обработки (T1=25°C) из низкотемпературного интервала, начиная от 25°C до 475°C, выдерживают 10 мин. Температура термодеструкции полиоксадиазола равна 477°C, а анализ проводится от 25°C с шагом 5°C, поэтому верхняя граница низкотемпературного интервала ограничивается температурой в 475°C. Затем продолжают нагрев до температуры карбонизации, равной 900°C, с целью перевода материала в электропроводящее состояние и естественным образом охлаждают до 25°C. После этого определяют удельную электропроводность карбонизованного образца полимера. Таким образом получают значение удельной электропроводности карбонизованного образца полимера при температуре предварительной термической обработки, равной T1. Затем проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C. После этого проводят построение зависимости удельной электропроводности карбонизованных образцов полимера от температур предварительной термической обработки (фиг. 2).

На фиг. 2 показана зависимость удельной электропроводности карбонизованного полимера из полиоксадиазола от температуры предварительной термической обработки при времени выдержки 10 мин.

Анализ фиг. 2 показывает, что в интервалах температур предварительной термической обработки от 260 до 270°C и от 425 до 435°C наблюдаются максимальные значения удельной электропроводности. В интервалах температур от 245 до 255°C и от 295 до 305°C наблюдаются минимальные значения удельной электропроводности. При этом все максимумы и минимумы менее выражены, чем при выдержке 30 мин (фиг. 1). Исходя из экспериментов, было получено, что снижение времени выдержки ниже 30 мин приводит к уменьшению удельной электропроводности образцов. При этом ряд максимумов и минимумов исчезает. При выдержке 25 мин проявляются все максимумы и минимумы, но они неярко выражены. В то же время выдержка более 30 мин технологически не целесообразна, т.к. при повышении времени выдержки не происходит изменений в удельной электропроводности. Поэтому достаточным временем выдержки является 25-30 мин, но лучше использовать 30 мин. То же самое проявляется и для других полимеров (ПАН, ПАБИ).

Пример 3. Исходный полимер из полиакрилонитрила нагревают от 20-22°C до первой температуры предварительной термической обработки (T1=25°C) из низкотемпературного интервала, начиная от 25°C до 280°C, выдерживают 30 мин. Температура термодеструкции полиакрилонитрила равна 282°C, а анализ проводится от 25°C с шагом 5°C, поэтому верхняя граница низкотемпературного интервала ограничивается температурой в 280°C. Затем продолжают нагрев до температуры карбонизации, равной 900°C, с целью перевода материала в электропроводящее состояние и естественным образом охлаждают до 25°C. После этого определяют удельную электропроводность карбонизованного образца полимера. Таким образом получается значение удельной электропроводности карбонизованного образца полимера при температуре предварительной термической обработки, равной T1. Затем проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C. После этого проводят построение зависимости удельной электропроводности карбонизованных образцов полимера от температур предварительной термической обработки (фиг. 3).

На фиг. 3 показана зависимость удельной электропроводности карбонизованного полимера из полиакрилонитрила от температуры предварительной термической обработки при времени выдержки 30 мин.

Анализ фиг. 3 показывает, что в интервале температур предварительной термической обработки от 255 до 260°C наблюдается максимальное значение удельной электропроводности. В интервале температур от 190 до 205°C наблюдается минимальное значение удельной электропроводности.

Пример 4. Исходный полимер из полиамидобензимидазола нагревают от 20-22°C до первой температуры предварительной термической обработки (T1=25°C) из низкотемпературного интервала, начиная от 25°C до 450°C, выдерживают 30 мин. Температура термодеструкции полиамидобензимидазола равна 451°C, а анализ проводится от 25°C с шагом 5°C, поэтому верхняя граница низкотемпературного интервала ограничивается температурой в 450°C. Затем продолжают нагрев до температуры карбонизации, равной 900°C, с целью перевода материала в электропроводящее состояние и естественным образом охлаждают до 25°C. После этого определяют удельную электропроводность карбонизованного образца полимера. Таким образом получается значение удельной электропроводности карбонизованного образца полимера при температуре предварительной термической обработки, равной T1. Затем проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C. После этого проводят построение зависимости удельной электропроводности карбонизованных образцов полимера от температур предварительной термической обработки (фиг. 3).

На фиг. 3 показана зависимость удельной электропроводности карбонизованного полимера из полиамидобензимидазола от температуры предварительной термической обработки при времени выдержки 30 мин.

Анализ фиг. 3 показывает, что в интервалах температур предварительной термической обработки от 260 до 265°C и от 420 до 430°C наблюдаются максимальные значения удельной электропроводности. В интервалах температур от 200 до 215°C и от 290 до 300°C наблюдаются минимальные значения удельной электропроводности.

Таким образом, в сравнении с прототипом заявляемый способ термического анализа полимеров обеспечивает достижение технического результата, заключающегося в получении заданной удельной электропроводности за счет выявления структурных изменений в полимере в процессе нагрева в низкотемпературном интервале.

Похожие патенты RU2653153C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ НАГРЕВА ПОЛИМЕРОВ ПРИ ТЕРМИЧЕСКОМ АНАЛИЗЕ 2017
  • Цыбук Иван Олегович
  • Лысенко Владимир Александрович
  • Крисковец Максим Викторович
RU2650826C1
Способ получения углеродных графитированных волокнистых материалов 2019
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
  • Щербакова Татьяна Сергеевна
  • Грудина Иван Геннадьевич
RU2705971C1
Способ отделки лиоцельного гидратцеллюлозного волокна при получении прекурсора углеродного волокнистого материала 2016
  • Аброськин Алексей Анатольевич
  • Еремьянов Олег Геннадиевич
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
RU2679265C2
СПОСОБ ПОЛУЧЕНИЯ УГЛЕРОДНЫХ ВОЛОКНИСТЫХ МАТЕРИАЛОВ ИЗ ВИСКОЗНЫХ ВОЛОКОН 2012
  • Черненко Дмитрий Николаевич
  • Бейлина Наталья Юрьевна
  • Черненко Николай Михайлович
  • Кудашов Игорь Геннадьевич
  • Аберяхимов Харис Максимович
RU2502836C2
Способ получения углеродных волокнистых материалов из гидратцеллюлозных волокон 2017
  • Бейлина Наталия Юрьевна
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
  • Щербакова Татьяна Сергеевна
  • Грудина Иван Геннадиевич
RU2671709C1
СПОСОБ СЕЛЕКЦИОННОЙ ОЦЕНКИ ГИДРАТЦЕЛЛЮЛОЗНЫХ ВОЛОКОН КАК ПРЕКУРСОРА ПРИ ПОЛУЧЕНИИ УГЛЕРОДНЫХ ВОЛОКОН 2016
  • Аброськин Алексей Анатольевич
  • Еремьянов Олег Геннадиевич
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
RU2642561C1
Способ получения активированной углеродной ткани 2018
  • Бейлина Наталия Юрьевна
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
RU2698744C1
ДАТЧИК ИЗМЕРЕНИЯ ТЕМПЕРАТУРНОГО ПОЛЯ 2016
  • Лысенко Владимир Александрович
  • Сазанов Юрий Николаевич
  • Крисковец Максим Викторович
  • Петрова Дарья Александровна
  • Федорова Галина Николаевна
RU2633652C1
Способ получения лиоцельного гидратцеллюлозного прекурсора углеродного волокнистого материала 2016
  • Аброськин Алексей Анатольевич
  • Еремьянов Олег Геннадиевич
  • Черненко Дмитрий Николаевич
  • Черненко Николай Михайлович
RU2669273C2
КОМПОЗИТ, СОДЕРЖАЩИЙ КАРБОНИЗОВАННЫЕ БИОПОЛИМЕРЫ И УГЛЕРОДНЫЕ НАНОТРУБКИ 2008
  • Кадек Мартин
  • Вахтлер Марио
  • Раймундо-Пинеро Энкарнасион
  • Беген Франсуа
RU2447531C2

Иллюстрации к изобретению RU 2 653 153 C1

Реферат патента 2018 года СПОСОБ ТЕРМИЧЕСКОГО АНАЛИЗА ПОЛИМЕРОВ

Изобретение относится к области термических методов анализа полимеров и может быть использовано для анализа электропроводности полимеров от условий его нагрева. Заявлен способ термического анализа полимеров, включающий нагрев исходного образца полимера в инертной среде, определение и анализ его свойства за счет структурных изменений в полимере. Согласно заявленному способу проводят предварительную термическую обработку исходного образца полимера при температуре, лежащей в низкотемпературном интервале, начиная от 25°C до температуры термодеструкции образца полимера, и выдерживают до 30 минут при этой температуре. Переводят предварительно термически обработанный образец полимера в электропроводящее состояние путем его карбонизации до 900°C, охлаждают до 25°C, определяют удельную электропроводность карбонизованного образца полимера. Проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C, строят график зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки из низкотемпературного интервала, и по характеру зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки в низкотемпературном интервале судят о заданной удельной электропроводности карбонизованного полимера. Технический результат - повышение точности определения удельной электропроводности полимеров за счет выявления структурных изменений в них в процессе нагрева в низкотемпературном интервале. 4 ил., 4 пр.

Формула изобретения RU 2 653 153 C1

Способ термического анализа полимеров, включающий нагрев исходного образца полимера в инертной среде, определение и анализ его свойства за счет структурных изменений в полимере, отличающийся тем, что проводят предварительную термическую обработку исходного образца полимера при температуре, лежащей в низкотемпературном интервале, начиная от 25°C до температуры термодеструкции образца полимера, и выдерживают до 30 минут при этой температуре, переводят предварительно термически обработанный образец полимера в электропроводящее состояние путем его карбонизации до 900°C, охлаждают до 25°C, определяют удельную электропроводность карбонизованного образца полимера, проводят аналогичные действия над следующим образцом исходного полимера для других температур предварительной термической обработки из низкотемпературного интервала с шагом 5°C, строят график зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки из низкотемпературного интервала, и по характеру зависимости удельной электропроводности карбонизованных образцов полимера от температуры предварительной термической обработки в низкотемпературном интервале судят о заданной удельной электропроводности карбонизованного полимера.

Документы, цитированные в отчете о поиске Патент 2018 года RU2653153C1

Способ контроля качества спекания углеродных материалов 1984
  • Котосонов Алексей Степанович
  • Левинтович Игорь Яковлевич
  • Остронов Борис Григорьевич
SU1265142A1
Способ испытания на электропроводность полимерных композиций 1983
  • Григоров Александр Олегович
  • Малевская Инна Ивановна
  • Сульженко Лев Леонидович
  • Сажин Борис Иванович
SU1150528A1
Способ комплексного определения теплоемкости температуропроводности и электропроводности материалов 1981
  • Рыков Владимир Алексеевич
  • Платунов Евгений Степанович
  • Самолетов Владимир Александрович
SU1048386A1
СПОСОБ И УСТРОЙСТВО ДЛЯ БЕСКОНТАКТНОГО ИЗМЕРЕНИЯ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ МЕТАЛЛИЧЕСКОГО СПЛАВА МЕТОДОМ ВРАЩАЮЩЕГОСЯ МАГНИТНОГО ПОЛЯ 2013
  • Поводатор Аркадий Моисеевич
  • Вьюхин Владимир Викторович
  • Цепелев Владимир Степанович
RU2531056C1
Шаблон для проверки правильности расположения тыклей накидочных гребенок круглочулочных автоматов 1936
  • Спасский Л.Л.
SU51229A1

RU 2 653 153 C1

Авторы

Крисковец Максим Викторович

Лысенко Владимир Александрович

Цыбук Иван Олегович

Даты

2018-05-07Публикация

2017-01-09Подача