СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТ-ГЛЫБЫ Российский патент 2018 года по МПК C01B33/32 

Описание патента на изобретение RU2658413C1

Изобретение относится к стекольной промышленности, в частности к способам получения силикат-глыбы.

Из уровня техники известен ряд способов получения силикат-глыбы с использованием газопламенных и электрических ванных стекловаренных печей [Химическая технология стекла и ситаллов / М.В. Артамонова, М.С. Асланова, И.М. Бужинский и др.; под ред. Н.М. Павлушкина - М.: Стройиздат, 1983. С. 127, С. 279, С. 324, С. 327].

Недостатком известных способов является длительность и энергоемкость технологического процесса, сложность аппаратурного оформления.

Наиболее близким решением к предлагаемому способу по технической сущности и достигаемому результату является способ получения силикат-глыбы, заключающийся в подаче шихты через загрузочный карман ванной газопламенной стекловаренной печи, плавление шихты, включая ответственную и длительную по времени гомогенизацию расплава, слив расплава через лоток с водой на конвейер, где происходит остывание расплава с образованием силикат-глыбы [Корнеев В.И., Данилов В.В. Растворимое и жидкое стекло. Санкт-Петербург: Стройиздат. СПБ. 1996. - 216 с.: ил., С. 136-138].

Недостатком данного способа является длительность технологического процесса, включая длительную технологическую стадию гомогенизации расплава, высокие удельные затраты на получение 1 кг стекломассы и сложность аппаратурного оформления стекловаренной печи.

Задача, на решение которой направлено изобретение, заключается в ускорении технологического процесса, сокращении времени плавления шихты и интенсификации стадии гомогенизации расплава, снижении удельных затрат на получение 1 кг стекломассы, упрощении аппаратурного оформления.

Технический результат достигается тем, что плавление шихты осуществляют плазменной горелкой, расположенной перпендикулярно к поверхности расплава на расстоянии 280-310 мм, а гомогенизация расплава осуществляется плазменной струей этой плазменной горелки при мощности работы плазмотрона 16-18 кВт и расходе плазмообразующего газа 2,2-2,4 м3/час.

Отличительным признаком предлагаемого способа является то, что плавление шихты осуществляют плазменной горелкой, расположенной перпендикулярно к поверхности расплава на расстоянии 280-310 мм, а гомогенизация расплава осуществляется плазменной струей этой горелки при мощности работы плазмотрона 16-18 кВт и расходе плазмообразующего газа 2,2-2,4 м3/час.

Изобретение поясняется чертежом.

На фигуре 1 показано, что в ванне 1 расплав 4 образуется под действием газопламенного факела 3 газопламенной горелки 2. Длительная технологическая стадия гомогенизации расплава происходит под действием конвективных потоков 5.

На фигуре 2 показано, что в ванне стекловаренной печи 1 расплав 4 подвергается воздействию тепловой энергии перпендикулярно расположенной плазменной горелки 6 плазменной струей 7. Стадия гомогенизации расплава по сравнению с известным способом ускоряется под действием динамического напора плазменной струи 7 потоками 8.

Существенные отличия известного и предлагаемого способов заключается в том, что в известном способе в ванне стекловаренной печи 1 расплав 4 подвергается воздействию тепловой энергии поперечно расположенной плазменной горелки 2 с газопламенным факелом 3. В предлагаемом способе плазменная горелка расположена перпендикулярно к поверхности расплава на расстоянии 280-310 мм.

Гомогенизация расплава является важнейшей стадией получения однородной стекломассы. В известном способе гомогенизация расплава осуществляется конвективными потоками за счет тепловой энергии поперечно расположенного к поверхности расплава пламени газовых горелок и является достаточно длительной и энергоемкой технологической операцией. В предлагаемом способе гомогенизация осуществляется динамическим напором плазменной струи горелки.

Затем полученный расплава сливается в воду, где происходит его охлаждение с образованием силикат-глыбы.

Проведенный анализ известных способов получения силикат-глыбы позволяет сделать вывод о соответствии заявляемого изобретения критерию «новизна».

Сравнение заявляемого решения не только с прототипом, но и с другими техническими решениями в данной области техники не выявило в них признаки, отличающие заявляемое решение от прототипа, что позволило сделать вывод о соответствии критерию «изобретательский уровень».

Характеристика компонентов. Кварцевый песок для силикат-глыбы брали в соответствии с требованиями ГОСТ 22551-77.

Поташ (K2CO3) брали по ГОСТ 10690-73.

Сопоставительный анализ известного и предлагаемого способов получения силикат-глыбы представлен в таблице 1.

Определены оптимальные параметры получения гомогенизированного расплава (таблица 2).

Использование плазменного факела позволит снизить удельные затраты тепловой энергии на 1 кг стекломассы.

Так, в известном способе затрачивается 1450 ккал/кг (6066,9 кДж).

В предлагаемом способе за счет использования плазменной струи ускоряется плавление шихты с образованием расплава, ускоряются процессы гомогенизации расплава и существенно снижаются удельные затраты тепловой энергии на 1 кг стекломассы. Так, на получение 1 кг стекломассы требуется 0,49 кВт/час. 0,49 кВт/час составляет 1764 кДж/час, что более чем в три раза ниже, чем затраты по известному способу, равные 6069,9 кДж.

Пример. На первом этапе производили подготовку шихты. Для этого кварцевый песок и поташ отвешивали в пропорциях, удовлетворяющих получению жидкого стекла из силикат-глыбы с силикатным модулем 2,85 согласно требованиям ГОСТ 13079-81. В пересчете на чистые оксиды состав шихты: 31% K2O и 69% SiO2. Компоненты усредняли в лабораторном смесителе в течение 30 мин. Подготовленную шихту подавали в лабораторную стекловаренную печь, снабженную плазменной горелкой ГН-5Р электродугового плазмотрона УПУ-8М. Параметры работы плазмотрона: мощность 18 кВт, расход плазмообразующего газа аргона -2,2 м3/час. Расстояние плазменной горелки от поверхности расплава составляет 280-310 мм. При расположении плазменной горелки от поверхности расплава более 310 мм процессы гомогенизации расплава снижаются за счет снижения динамического напора плазменной струи. При уменьшении расстояния плазменной горелки менее 280 мм наблюдается вспенивание расплава за счет значительного напора плазменной струи.

Варку силикат-глыбы осуществляли в течение 2 часов. Гомогенизацию расплава осуществляли плазменной струей данной плазменной горелки. Гомогенизированный расплав сливали через лоток в резервуар с водой, где в процессе остывания расплава образовывалась силикат-глыба. Только благодаря соблюдению всех условий предлагаемого способа получается силикат-глыба, соответствующая требованиям нормативных документов.

Похожие патенты RU2658413C1

название год авторы номер документа
СПОСОБ СИНТЕЗА СИЛИКАТ-ГЛЫБЫ 2017
  • Бондаренко Диана Олеговна
  • Бессмертный Василий Степанович
  • Бондаренко Надежда Ивановна
  • Павленко Зоя Владимировна
  • Изофатова Дарья Игоревна
  • Купавцев Эдуард Леонидович
RU2660138C1
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТНОГО СТЕКЛА 2019
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Рыженкова Лия Сергеевна
  • Бондаренко Надежда Ивановна
  • Бондаренко Диана Олеговна
  • Бондаренко Марина Алексеевна
RU2726676C1
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТНОГО СТЕКЛА 2017
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Дюмина Полина Семенова
  • Макаров Алексей Викторович
  • Кочурин Дмитрий Владимирович
RU2669975C1
СПОСОБ ПОЛУЧЕНИЯ ТАРНОГО СТЕКЛА 2023
  • Здоренко Наталья Михайловна
  • Бессмертный Василий Степанович
  • Макаров Алексей Владимирович
  • Варфоломеева Софья Владимировна
  • Анфалова Евгения Борисовна
  • Гокова Екатерина Николаевна
RU2814010C1
Способ получения свинцового хрусталя 2023
  • Здоренко Наталья Михайловна
  • Бессмертный Василий Степанович
  • Устинов Егор Денисович
RU2822150C1
СПОСОБ ПОЛУЧЕНИЯ ЗАЩИТНО-ДЕКОРАТИВНЫХ ПОКРЫТИЙ НА ИЗДЕЛИЯХ ИЗ СТЕНОВОЙ КЕРАМИКИ 2012
  • Бессмертный Василий Степанович
  • Бондаренко Надежда Ивановна
  • Лесовик Валерий Станиславович
  • Бессмертная Галина Георгиевна
  • Ткаченко Ольга Ивановна
RU2498965C1
СПОСОБ ГЛАЗУРОВАНИЯ КЕРАМИЧЕСКИХ ИЗДЕЛИЙ 2006
  • Бессмертный Василий Степанович
  • Симачёв Александр Викторович
  • Минько Нина Ивановна
  • Дюмина Полина Семеновна
  • Соколова Оксана Николаевна
  • Яровой Александр Александрович
  • Кошелева Ольга Сергеевна
RU2335483C2
СПОСОБ СИНТЕЗА ЧИСТЫХ КРИСТАЛЛИЧЕСКИХ МАТЕРИАЛОВ НА ОСНОВЕ ТУГОПЛАВКИХ ОКСИДОВ 1996
  • Крохин В.П.
  • Бессмертный В.С.
  • Пучка О.В.
RU2104942C1
СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТ-ГЛЫБЫ 2018
  • Бессмертный Василий Степанович
  • Здоренко Наталья Михайловна
  • Шенцев Артур Сергеевич
RU2710641C1
СПОСОБ ПОЛУЧЕНИЯ СИНТЕТИЧЕСКИХ МИНЕРАЛОВ 2005
  • Бессмертный Василий Степанович
  • Симачёв Александр Викторович
  • Минько Нина Ивановна
  • Крохин Вольт Павлович
  • Дюмина Полина Семеновна
  • Семененко Сергей Викторович
RU2346887C2

Иллюстрации к изобретению RU 2 658 413 C1

Реферат патента 2018 года СПОСОБ ПОЛУЧЕНИЯ СИЛИКАТ-ГЛЫБЫ

Изобретение относится к стекольной промышленности. Плавление шихты осуществляют плазменной горелкой, расположенной перпендикулярно к поверхности расплава на расстоянии 280-310 мм, а гомогенизацию расплава осуществляют плазменной струей этой плазменной горелки при мощности работы плазмотрона 16-18 кВт и расходе плазмообразующего газа 2,2-2,4 м3/час. Предложенное изобретение обеспечивает ускорение технологического процесса, сокращение времени плавления шихты и интенсификацию стадии гомогенизации расплава, снижение удельных затрат на получение 1 кг стекломассы и упрощение аппаратурного оформления. 2 табл., 2 ил., 1 пр.

Формула изобретения RU 2 658 413 C1

Способ получения силикат-глыбы, включающий подготовку шихты, ее плавление в стекловаренной печи, гомогенизацию расплава и его охлаждение в воде, отличающийся тем, что плавление шихты осуществляют плазменной горелкой, расположенной перпендикулярно к поверхности расплава на расстоянии 280-310 мм, а гомогенизация расплава осуществляется плазменной струей этой горелки при мощности работы плазмотрона 16-18 кВт и расходе плазмообразующего газа 2,2-2,4 м3/час.

Документы, цитированные в отчете о поиске Патент 2018 года RU2658413C1

КОРНЕЕВ В.И., ДАНИЛОВ В.В
Жидкое и растворимое стекло, Санкт-Петербург, Стройиздат СПб, 1996, с
Регулятор для ветряного двигателя в ветроэлектрических установках 1921
  • Толмачев Г.С.
SU136A1
ЭЛЕКТРИЧЕСКИЙ ТЕХНОЛОГИЧЕСКИЙ РЕАКТОР 1992
  • Мельник Г.Е.
  • Чумаков В.И.
RU2025054C1
СПОСОБ ПОЛУЧЕНИЯ СЛИТКОВ ПОЛИКРИСТАЛЛИЧЕСКОГО КРЕМНИЯ 2011
  • Карабанов Сергей Михайлович
  • Джхунян Валерий Леонидович
  • Ясевич Виктор Игоревич
  • Масахиро Хосино
RU2465201C1
US 6883349 B1, 26.04.2005
CN 104071800, 01.1.02014.

RU 2 658 413 C1

Авторы

Бондаренко Диана Олеговна

Бессмертный Василий Степанович

Бондаренко Надежда Ивановна

Минько Нина Ивановна

Изофатова Дарья Игоревна

Бурлаков Николай Михайлович

Дикунова Лариса Михайловна

Даты

2018-06-21Публикация

2017-09-28Подача