ОПОРА РОТОРА ТУРБОМАШИНЫ С КОНСИСТЕНТНОЙ СМАЗКОЙ Российский патент 2018 года по МПК F16C27/00 F02C7/06 F16C33/66 

Описание патента на изобретение RU2658752C1

Изобретение относится к области двигателестроения, в частности авиационного применения, а именно к устройствам для смазки подшипников роторной машины, работающих на консистентной смазке.

Известна система смазки опоры вала (Патент РФ №88588; кл. F16C 37/00, опубликовано 10.08.2009), содержащая вал, корпус, подшипник с наружным и внутренним кольцами, сепаратором и телами качения, по меньшей мере один канал для охладителя, выполненный в полом валу, резервуар с консистентной смазкой, полости охлаждения, сообщенные с полостями сброса отработавшего охладителя с одинаковым давлением среды, полости сброса отработавшей смазки.

Недостатком описанной конструкции является малоэффективная смазка элементов подшипника за счет того, что нет механизма подачи консистентной смазки на подшипник, т.е. мала вероятность ее попадания в зоны контактов элементов подшипника. Это делает невозможным циркуляцию консистентной смазки внутри подшипника, что снижает эксплуатационный ресурс опоры в целом.

Известна опора вала, выбранная в качестве прототипа (авторское свидетельство 1428856, МПК F16C 33/66, опубликовано 07.10.1988), содержащая полый вал, корпус, подшипник с наружными и внутренними кольцами, сепаратором и телами качения, активаторы, симметрично установленные с двух сторон подшипника, резервуар с консистентной смазкой, выполненный между активаторами и подшипником.

Недостатком описанной конструкции является невысокий эксплуатационный ресурс ввиду быстрого износа гибкой диафрагмы, а также повышенного тепловыделения при контакте с активатором, без возможности дополнительного охлаждения в области трения, что ограничивает частоту вращения вала и область ее применения.

Техническим результатом, достигаемым в заявленном изобретении, является повышение эксплуатационного ресурса опоры ротора турбомашины с консистентной смазкой за счет повышения надежности работы, а также расширения эксплуатационных возможностей путем применения конструкции на высокооборотных опорах ротора в области авиации.

Технический результат достигается тем, что опора ротора турбомашины с консистентной смазкой содержит полый вал, корпус, подшипник с наружными и внутренними кольцами, сепаратором и телами качения, активаторы, симметрично установленные с двух сторон подшипника, резервуар с консистентной смазкой, выполненный между активаторами и подшипником.

Новым в изобретении является то, что каждый активатор содержит подвижную в осевом направлении крыльчатку, установленную на неподвижной втулке, ограниченной в осевом направлении, нижний торец крыльчатки упирается в осевую пружину, установленную на неподвижной втулке и контактирующую с внутренним кольцом подшипника, при этом с возможностью контакта между верхним торцом крыльчатки и пружиной установлен поршневой элемент, наружная поверхность которого контактирует с уплотнительной крышкой, неподвижно закрепленной в корпусе подшипника, в полом валу и корпусе подшипника выполнены охлаждающие отверстия, сообщенные с воздушной полостью, образованной между крыльчаткой и поршневым элементом.

Повышение надежности работы предложенной конструкции опоры ротора турбомашины с консистентной смазкой достигается:

- за счет применения в конструкции простых и надежных элементов, обладающих более длительным ресурсом работы;

- путем незначительного тепловыделения между контактирующими элементами;

- за счет дополнительного охлаждения элементов конструкции, при помощи крыльчаток, работающих как вентилятор, эффективно прогоняющих и создающих напор воздуха в отверстиях и каналах устройства.

Расширение эксплуатационных возможностей достигается путем применения конструкции на высокооборотных опорах ротора в области авиации и достигается возможностью увеличения частоты вращения вала вследствие достаточного охлаждения элементов конструкции.

Предлагаемое изобретение поясняется чертежами, где

на фиг. 1 - опора на минимальных режимах работы двигателя,

на фиг. 2 - опора на максимальных режимах работы двигателя.

Опора ротора турбомашины с консистентной смазкой содержит полый вал 1, корпус 2, подшипник 3 с наружным 4 и внутренним 5 кольцами, сепаратором 6 и телами качения 7, резервуар 8 с консистентной смазкой, установленный между активатором 9 и подшипником 3 (фиг. 1, 2).

Активаторы 9 установлены с двух сторон подшипника 3, при этом каждый активатор 9 содержит подвижную в осевом направлении крыльчатку 10, установленную на неподвижной втулке 11, ограниченной в осевом направлении (фиг. 1, 2). При этом неподвижная втулка 11 всегда обеспечивает передачу крутящего момента на крыльчатку 10.

Нижний торец 12 крыльчатки 10 упирается в осевую пружину 13, установленную на неподвижной втулке 11 и контактирующую с внутренним кольцом 5 подшипника 3 (фиг. 1, 2).

Между верхним торцом 14 крыльчатки 10 и пружиной 13 установлен поршневой элемент 15, наружная поверхность которого контактирует с уплотнительной крышкой 16, неподвижно закрепленной в корпусе 2 подшипника 3 (фиг. 1, 2).

В полом валу 1 и корпусе 2 подшипника 3 выполнены охлаждающие отверстия 17, сообщенные с воздушной полостью 18, образованной между крыльчаткой 10 и поршневым элементом 15 (фиг. 1, 2).

Опора ротора турбомашины с консистентной смазкой работает следующим образом.

При сборке опоры заполняют резервуар 8 и подшипник 3 консистентной смазкой (фиг. 1, 2).

Охлаждение наружного 4 и внутреннего 5 колец подшипника 3 осуществляется воздухом, проходящим через отверстия 17 вала 1, корпуса 2, неподвижной втулки 11, крыльчатки 10 и уплотнительной крышки 16 (фиг. 1, 2).

Далее отработанный воздух, минуя крыльчатку 10 активатора 9, сбрасывается в полость 18 (фиг. 1, 2). При этом с повышением частоты вращения вала 1 эффективность крыльчатки 10 возрастает, и она создает осевое усилие, направленное на уменьшение объема резервуара с консистентной смазкой 8 (фиг. 1, 2). А именно крыльчатка 10 смещается, скользя по неподвижной втулке 11, и через верхний торец 14 воздействует на поршневой элемент 15, обжимая при этом пружину 13 нижним торцем 12.

Уменьшение объема резервуара 8 способствует подаче консистентной смазки на сепаратор 6, внутренняя часть которого захватывает смазку и подает ее на тела качения 7 и кольца 4 и 5 подшипника 3 (фиг. 1, 2).

Излишки смазки из подшипника обратно возвращаются в резервуар 8, увеличивая его объем, т.е. происходит постоянное перемешивание смазки (фиг. 1, 2).

Дополнительному улучшению охлаждения опоры способствуют крыльчатки 10 (фиг. 1, 2), эффективно прогоняющие и создающие напор воздуха в отверстиях и каналах устройства.

Контакт вращающейся крыльчатки 10 и неподвижного в окружном направлении поршневого элемента 15 происходит по верхнему торцу 12, в котором реализован минимальный коэффициент трения материалов (фиг. 1, 2). Это позволяет повысить эксплуатационную частоту вращения вала при приемлемых тепловыделениях.

Применение данной конструкции позволяет повысить эксплуатационный ресурс опоры ротора турбомашины с консистентной смазкой за счет повышения надежности работы, а также расширить эксплуатационные возможности путем применения конструкции на высокооборотных опорах ротора в области авиации.

Похожие патенты RU2658752C1

название год авторы номер документа
УСТРОЙСТВО ДЛЯ СМАЗКИ ПОДШИПНИКОВ РОТОРНОЙ МАШИНЫ 2018
  • Храмин Роман Владимирович
  • Кикоть Николай Владимирович
  • Буров Максим Николаевич
  • Лебедев Максим Владимирович
  • Равикович Юрий Александрович
RU2682294C1
ОПОРА РОТОРА ТУРБОМАШИНЫ С КОНСИСТЕНТНОЙ СМАЗКОЙ 2017
  • Кикоть Николай Владимирович
  • Лебедев Максим Владимирович
  • Старков Роман Юрьевич
  • Шмотин Юрий Николаевич
RU2661376C1
ОПОРА РОТОРА ТУРБОМАШИНЫ С КОНСИСТЕНТНОЙ СМАЗКОЙ 2017
  • Кикоть Николай Владимирович
  • Лебедев Максим Владимирович
  • Старков Роман Юрьевич
  • Шмотин Юрий Николаевич
RU2666108C1
ОПОРА РОТОРА С КОНСИСТЕНТНОЙ СМАЗКОЙ 2019
  • Храмин Роман Владимирович
  • Кикоть Николай Владимирович
  • Лебедев Максим Владимирович
  • Старков Роман Юрьевич
RU2723515C1
ТУРБОВЕНТИЛЯТОРНЫЙ АГРЕГАТ С ПОДШИПНИКАМИ НА КОНСИСТЕНТНОЙ СМАЗКЕ 1966
SU187045A1
КОМБИНИРОВАННАЯ РАДИАЛЬНАЯ ОПОРА 2015
  • Кикоть Николай Владимирович
  • Лебедев Максим Владимирович
  • Старков Роман Юрьевич
  • Шмотин Юрий Николаевич
RU2626783C2
ВЫСОКООБОРОТНЫЙ ТУРБОГЕНЕРАТОР С ПАРОВЫМ ПРИВОДОМ МАЛОЙ МОЩНОСТИ 2014
  • Паршуков Владимир Иванович
  • Ефимов Николай Николаевич
  • Кихтёв Иван Максимович
  • Горбачев Валерий Матвеевич
  • Васильев Борис Николаевич
  • Копица Вадим Валерьевич
  • Папин Владимир Владимирович
  • Безуглов Роман Владимирович
  • Русакевич Ирина Владимировна
RU2577678C1
ПОДШИПНИК КАЧЕНИЯ 1997
  • Смолянинов В.В.
  • Смолянинов В.В.
  • Смолянинов В.В.
RU2138704C1
Комбинированный радиальный подшипник с широким диапазоном рабочих скоростей и нагрузок (варианты) 2016
  • Шестаков Александр Леонидович
  • Карипов Рамзиль Салахович
  • Карипов Денис Рамзилевич
  • Левина Галина Абрамовна
RU2649280C1
Подшипник качения для высокооборотного ротора турбомашины 1973
  • Коряковцев Петр Сергеевич
  • Тихвинский Юрий Владимирович
SU469007A1

Иллюстрации к изобретению RU 2 658 752 C1

Реферат патента 2018 года ОПОРА РОТОРА ТУРБОМАШИНЫ С КОНСИСТЕНТНОЙ СМАЗКОЙ

Изобретение относится к области двигателестроения, в частности авиационного применения, а именно к устройствам для смазки подшипников роторной машины, работающих на консистентной смазке. Опора ротора турбомашины с консистентной смазкой содержит полый вал, корпус, подшипник с наружными и внутренними кольцами, сепаратором и телами качения, активаторы, симметрично установленные с двух сторон подшипника, резервуар с консистентной смазкой, выполненный между активаторами и подшипником. Каждый активатор содержит подвижную в осевом направлении крыльчатку, установленную на неподвижной втулке, ограниченной в осевом направлении. Нижний торец крыльчатки упирается в осевую пружину, установленную на неподвижной втулке и контактирующую с внутренним кольцом подшипника, при этом с возможностью контакта между верхним торцом крыльчатки и пружиной установлен поршневой элемент, наружная поверхность которого контактирует с уплотнительной крышкой, неподвижно закрепленной в корпусе подшипника. В полом валу и корпусе подшипника выполнены охлаждающие отверстия, сообщенные с воздушной полостью, образованной между крыльчаткой и поршневым элементом. Технический результат: повышение эксплуатационного ресурса опоры ротора турбомашины с консистентной смазкой за счет повышения надежности работы, а также расширение эксплуатационных возможностей путем применения конструкции на высокооборотных опорах ротора в области авиации. 2 ил.

Формула изобретения RU 2 658 752 C1

Опора ротора турбомашины с консистентной смазкой, содержащая полый вал, корпус, подшипник с наружными и внутренними кольцами, сепаратором и телами качения, активаторы, симметрично установленные с двух сторон подшипника, резервуар с консистентной смазкой, выполненный между активаторами и подшипником, отличающаяся тем, что каждый активатор содержит подвижную в осевом направлении крыльчатку, установленную на неподвижной втулке, ограниченной в осевом направлении, нижний торец крыльчатки упирается в осевую пружину, установленную на неподвижной втулке и контактирующую с внутренним кольцом подшипника, при этом с возможностью контакта между верхним торцом крыльчатки и пружиной установлен поршневой элемент, наружная поверхность которого контактирует с уплотнительной крышкой, неподвижно закрепленной в корпусе подшипника, в полом валу и корпусе подшипника выполнены охлаждающие отверстия, сообщенные с воздушной полостью, образованной между крыльчаткой и поршневым элементом.

Документы, цитированные в отчете о поиске Патент 2018 года RU2658752C1

Устройство для пластичной циркуляционной смазки 1986
  • Соловьев Станислав Николаевич
  • Бирюков Сергей Георгиевич
  • Мозолюк Владимир Алексеевич
  • Шеремет Валентин Пантелеевич
  • Кожемякин Николай Александрович
SU1428856A1
Способ одностороннего горячего лужения 1949
  • Ларионов С.И.
  • Семеринов П.Е.
SU85588A1
ОПОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ 1999
  • Иванов В.В.
  • Кузнецов В.А.
  • Тункин А.И.
RU2191935C2
СПОСОБ ПОДАЧИ МАСЛА В МЕЖРОТОРНЫЙ ПОДШИПНИК ОПОРЫ РОТОРА ГАЗОТУРБИННОГО ДВИГАТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Назаренко Юрий Борисович
  • Никитин Александр Сергеевич
  • Добриневский Анатолий Антонович
  • Шмунк Андрей Александрович
RU2613964C1
СПОСОБ ПРОГНОЗИРОВАНИЯ ЦИРКУЛЯТОРНЫХ НАРУШЕНИЙ ГОЛОВНОГО МОЗГА ПРИ ИНТУБАЦИИ ТРАХЕИ И В ТЕЧЕНИЕ АНЕСТЕЗИИ 1999
  • Костылев А.Н.
RU2187239C2

RU 2 658 752 C1

Авторы

Кикоть Николай Владимирович

Лебедев Максим Владимирович

Старков Роман Юрьевич

Шмотин Юрий Николаевич

Даты

2018-06-22Публикация

2017-03-29Подача