СПОСОБ ИЗГОТОВЛЕНИЯ СВЕТОПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ОПТИЧЕСКИХ СИСТЕМ НА ТИТАНОВЫХ ПОДЛОЖКАХ Российский патент 2018 года по МПК G02B1/00 

Описание патента на изобретение RU2660408C1

Предлагаемое изобретение относится к области технологий получения светопоглощающих многослойных изделий и может быть использовано для изготовления светопоглощающих элементов оптико-электронных приборов и оптических систем (зеркал, телескопов).

Актуальность решаемой проблемы основана на необходимости устранения помех, вызванных наличием светоотражающих конструкционных элементов, выполненных из титановых сплавов - держателей, опор оптических систем, негативно влияющих на точность регистрации световых сигналов, получаемых с исследуемых объектов. Это диктует необходимость применения светопоглощающих покрытий для подобного типа элементов оптических систем.

Известен в качестве прототипа заявляемого способ формирования светопоглощающего покрытия методом гальванического осаждения никель-фосфорных пленок (патент РФ №2566905, МПК В44С 1/22, опубл. 27.10.2015 г.), включающий предварительную химическую обработку исходной поверхности детали, гальваническое осаждение никель-фосфорной пленки и последующее ее оксидирование в кислотных растворах.

Однако известные способы достаточно сложны и в них не предусматривается получение оптических элементов с заданной степенью светопоглощения формируемого покрытия на титановых деталях, а также не предусмотрено получение покрытия, при эксплуатации которого минимален объем газовыделения.

Задачей авторов изобретения является разработка способа получения светопоглощающих элементов оптических систем с заданной степенью светопоглощающих свойств формируемого покрытия на деталях из титановых сплавов, а также получение покрытия, при эксплуатации которого минимален объем газовыделения.

Новый технический результат заключается в обеспечении повышения адгезии покрытия к титановой подложке за счет получения заданного рельефа шероховатости поверхностной обработки, в обеспечении заданных оптических показателей светопоглощения, а также получение покрытия, при эксплуатации которого минимален объем газовыделения.

Указанные задача и новый технический результат обеспечиваются тем, что в отличие от известного способа, включающего предварительную подготовку титановых подложек обезжиривание и промывку, последующее травление в растворе минеральных соединений, нанесение слоя целевого покрытия, согласно изобретению, обезжиривание проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л, и кальцинированной соды концентрации 35-40 г/л, при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек, затем проводят активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, затем проводят обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе состава:

цинк окись 20-35 г/л кислота плавиковая 60-90 г/л тилен гликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин, затем полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле и цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование в растворе состава:

никельсернокислый 30-35 г/л натрия гипофосфит 20-25 г/л натрий уксуснокислый 10-15 г/л кислота уксусная 12 мл/л,

а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования в электролите следующего состава, г/л:

хромовый ангидрид 250-280 кислота борная 10-15 натрий уксуснокислый 3,0-5,0

при температуре 15-30°C в течение 5-15 мин, при этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде, и окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре.

Предлагаемый способ поясняется следующим образом.

Первоначально осуществляют традиционную предварительную подготовку поверхности титановых подложек, обезжиривание, промывку в проточной воде. Процесс обезжиривания поверхности титановых подложек проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л и кальцинированной соды концентрации 35-40 г/л при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек.

Критично в условиях данного способа проводить травление именно в смеси указанных ингредиентов и в рамках заявленных концентраций, поскольку именно такой процесс травления приводит к получению заданного рельефа шероховатости поверхности в обрабатываемых титановых деталях, что в конечном итоге приводит к улучшению адгезии получаемого впоследствии слоя покрытия и получению заданной степени светопоглощения. При травлении в условиях, выходящих за рамки заявленных значений концентраций и времени травления, указанный результат в эксперименте не наблюдался.

Затем проводят активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, что необходимо для удаления нежелательных для покрытия продуктов травления, существенно снижающих адгезию покрытия к титановой подложке.

После этого ведут обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе состава:

цинк окись 20-35 г/л кислота плавиковая 60-90 г/л этиленгликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин.

Полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле и цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование в растворе состава:

никельсернокислый 30-35 г/л натрия гипофосфит 20-25 г/л натрий уксуснокислый 10-15 г/л кислота уксусная 12 мл/л

при температуре 70-90°C в течение 15-20 мин.

Необходимость получения промежуточного слоя вызвана требованием повышения прочности сцепления с титановой подложкой целевого комплексного хромосодержащего светопоглощающего покрытия.

Целевое комплексное хромосодержащее светоотражающее покрытие получают путем гальванического хромирования в электролите следующего состава, г/л:

хромовый ангидрид 250-280 кислота борная 10-15 натрий азотнокислый 3,0-5,0

при температуре 15-30°C в течение 5-15 мин.

Оптимальное время проведения процесса гальванического хромирования и условий его осуществления подобраны экспериментально, исходя из условия проявления улучшенных оптических и механических свойств покрытия. Проведение процесса гальваническою хромирования в течение более продолжительного времени приводит к значительному увеличению рыхлости и нестойкости формируемого покрытия.

Изменение электрических параметров процесса хромирования ведет к браку неравномерности слоя покрытия.

Все условия и режимы процесса получения целевого комплексного светоотражающего хромосодержащего покрытия отработаны в ходе проведения экспериментальных исследований и подтверждены контрольными данными, полученными на опытных образцах.

Таким образом, при использовании предлагаемого способа изготовления светопоглощающих элементов оптических систем достигается новый технический результат, заключающийся в обеспечении улучшения адгезии слоя покрытия к титановой подложке за счет получения заданного рельефа шероховатости поверхностной обработки, в обеспечении заданных оптических показателей светопоглощения и возможности получения покрытия, при эксплуатации которого минимален объем газовыделения.

Возможность промышленной реализации предлагаемого способа подтверждена следующим примером конкретной реализации.

Пример 1. Предлагаемый способ был реализован в лабораторных условиях на заготовках из титанового сплава. Способ включает в себя следующие операции:

- обезжиривание в растворе состава, г/л:

тринатрийфосфата 35-40 кальцинированной соды 35-40

при комнатной температуре в течение 10-15 мин;

- промывка в горячей воде;

- промывка в холодной проточной воде:

- травление в растворе состава, г/л:

кислота соляная 15-25 кислота плавиковая 10-15

при комнатной температуре в течение 1-2 мин

- промывка в холодной проточной воде;

- осветление в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек;

- активирование в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек;

- обработка в этиленгликоле в течение 10-15 сек;

- промывка в холодной проточной воде;

- цинкатная обработка в растворе состава:

цинк окись 20-35 г/л кислота плавиковая 60-90 г/л этиленгликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин;

- удаление цинкатной пленки в растворе азотной кислоты - 400-900 г/л;

- вторая обработка в этиленгликоле;

- вторая цинкатная обработка в растворе состава:

цинк окись 20-35 г/л кислота плавиковая 60-90 г/л этиленгликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин;

- промывка в холодной проточной воде;

- химическое никелирование в растворе состава:

никельсернокислый 30-35 г/л натрия гипофосфит 20-25 г/л натрий уксуснокислый 10-15 г/л кислота уксусная 12 мл/л

при температуре 70-90°C в течение 15-20 мин;

- хромирование в электролите состава (г/л):

- хромовый ангидридл 250-280 - кислота борная 10-15 - натрий азотнокислый 3,0-5,0

при температуре 15-30°C в течение 5-15 мин.

На фиг. 1 показан срез образца из титана с полученными слоями покрытий. Испытания опытных образцов по соответствию показателей газовыделения полученного целевого покрытия проводились в лабораторных условиях, максимально приближенных к условиям эксплуатации (вакуум, повышенная температура, механическое воздействие при вращении в центрифуге, в двигающихся с переменными скоростями модулях).

Полученное указанным образом целевое комплексное хромосодержащее светоотражающее покрытие характеризуется улучшенными показателями адгезии покрытия к титановым подложкам, заданной степенью светопоглощения, минимальным уровнем газовыделения.

Как это показали эксперименты, при реализации предлагаемого способа обеспечена возможность улучшения показателей адгезии слоя покрытия к титановым подложкам за счет получения заданного рельефа шероховатости поверхностной обработки, обеспечены заданные оптические показатели и минимизирован объем газовыделений.

Похожие патенты RU2660408C1

название год авторы номер документа
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕТОПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ОПТИЧЕСКИХ СИСТЕМ НА ПОДЛОЖКАХ ИЗ АЛЮМИНИЕВО-МАГНИЕВОГО СПЛАВА 2020
  • Морозова Елена Витальевна
  • Канафеева Людмила Владимировна
  • Горелов Александр Михайлович
RU2772080C2
Способ изготовления светопоглощающих элементов оптических систем на стальных подложках 2017
  • Морозова Елена Витальевна
  • Канафеева Людмила Владимировна
  • Горелов Александр Михайлович
RU2672655C2
СПОСОБ ИЗГОТОВЛЕНИЯ СВЕТОПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ОПТИЧЕСКИХ СИСТЕМ НА ПОДЛОЖКАХ ИЗ НЕРЖАВЕЮЩЕЙ СТАЛИ 2018
  • Морозова Елена Витальевна
  • Канафеева Людмила Владимировна
  • Горелов Александр Михайлович
RU2683883C1
СПОСОБ РАВНОКАНАЛЬНОГО УГЛОВОГО ПРЕССОВАНИЯ ЗАГОТОВОК ИЗ ТИТАНА ИЛИ НЕРЖАВЕЮЩЕЙ СТАЛИ 2009
  • Коршунов Александр Иванович
  • Морозова Елена Витальевна
  • Гончаров Иван Дмитриевич
  • Поляков Лев Викторович
RU2400321C1
СПОСОБ ИЗГОТОВЛЕНИЯ МАТРИЦ ДЛЯ ЗАГОТОВОК ЭЛЕМЕНТОВ СВЕТООТРАЖАЮЩИХ СИСТЕМ 2013
  • Морозова Елена Витальевна
  • Канафеева Людмила Владимировна
  • Горячев Эдуард Юрьевич
  • Горелов Александр Михайлович
  • Санкин Евгений Владимирович
RU2525705C1
Способ металлизации керамических изделий 2021
  • Непочатов Юрий Кондратьевич
  • Плетнёв Петр Михайлович
  • Верещагин Владимир Иванович
RU2777312C1
Способ подготовки поверхности ниобия и его сплавов и нанесения никелевого покрытия 1960
  • Андреева Т.М.
  • Мхитарян Л.С.
  • Тупицын Г.И.
SU138123A1
СПОСОБ ПОЛУЧЕНИЯ СВЕТОПОГЛОЩАЮЩЕГО ПОКРЫТИЯ 2011
  • Жукова Светлана Александровна
  • Тютюгин Антон Валерьевич
  • Заднепровский Борис Иванович
  • Зайцев Александр Гуьевич
  • Гринькин Евгений Анатольевич
  • Турков Владимир Евгеньевич
RU2467094C1
Способ подготовки поверхностиТиТАНА и ЕгО СплАВОВ 1979
  • Рябой Айзик Яковлевич
  • Соловьева Зоя Алексеевна
  • Евдокимов Георгий Николаевич
  • Вашенцева Светлана Михайловна
  • Должанский Юрий Михайлович
SU850754A1
Способ химического никелирования поверхности металломатричного композиционного материала алюминий-карбид кремния 2022
  • Ревин Евгений Александрович
  • Трошин Игорь Юрьевич
  • Лихачева Ирина Евгеньевна
  • Курдогло Елена Дмитриевна
  • Леонтьев Николай Александрович
  • Тихомиров Павел Львович
RU2792669C1

Иллюстрации к изобретению RU 2 660 408 C1

Реферат патента 2018 года СПОСОБ ИЗГОТОВЛЕНИЯ СВЕТОПОГЛОЩАЮЩИХ ЭЛЕМЕНТОВ ОПТИЧЕСКИХ СИСТЕМ НА ТИТАНОВЫХ ПОДЛОЖКАХ

Использование: получение светопоглощающих многослойных изделий для изготовления светопоглощающих элементов оптических - электронных приборов и оптических систем (зеркал) космических аппаратов. Техническим результатом изобретения является разработка способа получения светопоглощающих элементов оптических систем, обеспечивающего получение оптических элементов с заданной степенью светопоглощающих свойств формируемого покрытая, а также получение покрытия, при эксплуатации которого минимален объем газовыделения. Сущность изобретения: в способе изготовления светопоглощающих элементов оптических систем на титановых подложках, включающем предварительную подготовку титановых подложек, обезжиривание и промывку, последующее травление в растворе минеральных соединений, нанесение слоя целевого покрытия, согласно изобретению, обезжиривание проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л и кальцинированной соды концентрации 35-40 г/л, при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек, затем ведут активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, затем проводят обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе определенного состава, затем полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле и цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование, а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования, при этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде и окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре. 1 ил.

Формула изобретения RU 2 660 408 C1

Способ изготовления светопоглощаюших элементов оптических систем на титановых подложках, включающий предварительную подготовку титановых подложек, обезжиривание и промывку, последующее травление в растворе минеральных соединений, нанесение слоя целевого покрытия, отличающийся тем, что обезжиривание проводят в растворе смеси тринатрийфосфата концентрации 35-40 г/л и кальцинированной соды концентрации 35-40 г/л при комнатной температуре в течение 10-15 мин, операцию травления ведут в смеси растворов соляной 15-25 г/л и плавиковой 10-15 г/л минеральных кислот в течение 1-2 мин, затем проводят осветление поверхности титановой подложки путем обработки в растворе азотной кислоты 400-900 г/л при комнатной температуре в течение 25-30 сек, затем проводят активирование поверхности титановой подложки в растворе соляной кислоты 380-400 г/л при комнатной температуре в течение 5-10 сек, затем проводят обработку в этиленгликоле в течение 10-15 сек, затем осуществляют цинкатную обработку в растворе состава:

цинк окись 20-35 г/л кислота плавиковая 60-90 г/л этиленгликоль 80-90 мл/л

при комнатной температуре в течение 2-4 мин, затем полученную цинкатную пленку удаляют обработкой в растворе азотной кислоты 400-900 г/л; после проведения повторной обработки в этиленгликоле цинкатной обработки в упомянутом цинкатном растворе осуществляют химическое никелирование в растворе состава:

никельсернокислый 30-35 г/л натрия гипофосфит 20-25 г/л натрий уксуснокислый 10-15 г/л кислота уксусная 12 мл/л

при температуре 70-90°C в течение 15-20 мин; а целевое комплексное хромосодержащее покрытие получают путем гальванического хромирования в электролите следующего состава, г/л:

хромовый ангидрид 250-280 кислота борная 10-15 натрий уксуснокислый 3,0-5,0

при температуре 15-30°С в течение 5-15 мин, при этом все операции химической обработки и получения покрытий чередуют с промывкой в проточной воде, и окончательно полученные изделия извлекают из электролитической ванны, промывают и сушат на открытом воздухе при комнатной температуре.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660408C1

СПОСОБ ФОРМИРОВАНИЯ СВЕТОПОГЛОЩАЮЩЕГО ПОКРЫТИЯ 2014
  • Виговская Татьяна Владимировна
  • Кокин Евгений Петрович
  • Львова Наталия Михайловна
  • Марусев Дмитрий Вадимович
  • Нечипоренко Виктория Сергеевна
  • Сурин Юрий Васильевич
  • Казанцев Олег Юрьевич
RU2566905C1
СВЕТОПОГЛОЩАЮЩЕЕ ПОКРЫТИЕ 2015
  • Волынкин Валерий Михайлович
  • Киселев Валерий Михайлович
  • Евстропьев Сергей Константинович
  • Бурчинов Алексей Николаевич
  • Матвеенцев Антон Викторович
RU2626838C2
Стабилизатор напряжения компенсационного типа 1959
  • Карповский Г.И.
  • Попов С.Г.
SU126149A1
Способ приготовления лака 1924
  • Петров Г.С.
SU2011A1
Способ защиты переносных электрических установок от опасностей, связанных с заземлением одной из фаз 1924
  • Подольский Л.П.
SU2014A1
US 6790583 B2, 14.09.2004.

RU 2 660 408 C1

Авторы

Морозова Елена Витальевна

Канафеева Людмила Владимировна

Горелов Александр Михайлович

Даты

2018-07-06Публикация

2017-08-11Подача