СПОСОБ ВОССТАНОВЛЕНИЯ НАПЛАВКОЙ ПОВЕРХНОСТЕЙ ТЕЛ ВРАЩЕНИЯ Российский патент 2018 года по МПК B23K9/04 B23P6/02 

Описание патента на изобретение RU2660537C1

Изобретение относится к сварочному производству, а именно к способам восстановления наплавкой изношенных поверхностей тел вращения.

Известен способ восстановления наплавкой поверхностей тел вращения, включающий подогрев тела, наплавку на поверхность тела электродом под слоем флюса износостойкого материала, термическую и механическую обработку наплавленной поверхности [Ли Р.И. Технологии восстановления и упрочнения деталей автотракторной техники. - Липецк: Изд-во ЛГТУ, 2014. - 379 с.]. Этот способ восстановления наплавкой поверхностей тел вращения по совокупности технических признаков и назначению является наиболее близким аналогом (прототипом) по отношению к предлагаемому способу.

Недостатком данного способа является возникновение в поверхностном слое наплавленного металла остаточных, в большинстве случаев растягивающих напряжений, приводящих к искажению размеров и формы наплавляемой детали, а также появлению трещин в самой наплавке.

Задачей, на решение которой направлено предлагаемое изобретение, является уменьшение и устранение деформаций и напряжений в наплавляемой детали.

Техническим результатом изобретения является снижение и предотвращение искажений размеров и формы наплавляемой детали, трещин в наплавке, снижение размеров припусков на механическую обработку.

Технический результат изобретения достигается тем, что в способе восстановления наплавкой поверхностей тел вращения, включающем подогрев тела, наплавку электродом износостойкого материала на поверхность тела, термическую и механическую обработку наплавленной поверхности, согласно изобретению электродуговую наплавку поверхности тела первым слоем ведут по винтовой линии обратно-ступенчатым способом, наплавку остальных слоев ведут поперечно колеблющимся электродом, а во время механической обработки поверхности тела после наплавки и термообработки используют геомодификаторы трения.

Технический результат изобретения достигается также тем, что при наплавке слоев поперечно колеблющимся электродом на колебания электрода накладывают более высокочастотные ультразвуковые колебания частотой не менее 15 кГц.

Кроме того, во время охлаждения наплавленного тела при его термической обработке используют ультразвуковое воздействие.

Кроме того, подогрев тела осуществляют предварительный и/или сопутствующий.

Кроме того, сопутствующий подогрев начинают со стороны, противоположной наплавке, и перемещают источник сопутствующего подогрева в направлении наплавки.

Кроме того, в качестве геомодификаторов трения используют вводимые со смазкой порошки, включающие серпентиниты и/или шунгиты.

Выполнение первого слоя электродуговой наплавки поверхности тела обратно-ступенчатым способом за счет рациональной последовательности укладки швов уменьшает (компенсирует) деформации продольной и поперечной усадок. Установлено, что соотношение электростатической, аэродинамической, электромагнитной, поверхностного натяжения, тяжести и других сил, воздействующих на каплю, находящуюся на торце электрода, влияет на характер плавления и перенос металла электрода. В связи с этим использование при электродуговой наплавке поверхности тела вторым и более слоем поперечно колеблющегося электрода позволяет повысить каплеперенос металла электрода и производительность наплавки, а также улучшить структуру наплавляемого металла. Поперечные колебания электрода снижают пребывание жидкого металла в зоне перегрева, а при перемещении источника теплоты температура металла в противоположной стороне слоя понижается, снижая его вязкость и поверхностное натяжение. В результате получаются валики с более плоской поверхностью, что позволяет снизить величины размеров припусков под последующую механическую обработку наплавленной поверхности тела вращения. За счет сокращения времени пребывания жидкого металла в зоне перегрева уменьшается величина зерна основного металла в зоне оплавления, что способствует появлению мелкозернистой структуры наплавленного металла. Поперечные колебания электрода также способствуют созданию дезориентированной структуры наплавленной поверхности увеличенной прочности.

Использование во время механической обработки поверхности тела после наплавки и термообработки геомодификаторов трения адсорбирует активизированные частицы геомодификаторов на поверхности детали уменьшая коэффициент трения, снижая шероховатость, увеличивая микротвердость поверхности, уменьшая затраты энергии на обработку и уровень шума в рабочем помещении.

Наложение на колебания поперечно колеблющегося электрода более высокочастотных ультразвуковых колебаний частотой не менее 15 кГц позволяет улучшить микроструктуру наплавляемого слоя, делая структуру металла мелкозернистой с высокой плотностью, тем самым повышая износостойкость наплавленного металла.

Использование ультразвукового воздействия во время охлаждения наплавленного тела при термической обработке позволяет устранять опасности зарождения холодных трещин и повысить качество наплавочного соединения из среднеуглеродистых легированных конструкционных сталей, например 30ХГСН2А, 30X3, 35Х, 40ХГСН2М, 40ХГСН2А и других. При ультразвуковой обработке средняя скорость охлаждения сталей в зоне термического влияния, отнесенная к 650°С, составляла 30 К/с.

Осуществление предварительного и/или сопутствующего подогрева тела вращения до температуры 100-500°С необходимо для исключения вероятности появления трещин, особенно если наплавляемая деталь предназначена для работы в условиях смены температур. Так, например, при восстановлении деталей из хромомолибденовых, хромовольфрамовых и других теплостойких инструментальных сталей необходим предварительный подогрев до 300°С. Совместное осуществление предварительного и сопутствующего подогрева тела вращения еще сильнее влияет на вероятность исключения трещин в наплавляемой поверхности.

Начало сопутствующего подогрева со стороны, противоположной наплавке, и перемещение источника сопутствующего подогрева в направлении наплавки способствуют получению более однородных по структуре наплавленных слоев.

Применение в качестве геомодификаторов трения вводимых со смазкой порошков, включающих серпентиниты и/или шунгиты, позволяет шлифовать поверхность тела вращения, вызывая рост его температуры. При этом частицы геомодификаторов активируются, диффундируют в поверхность детали и упрочняют ее за счет увеличения микротвердости поверхности трения.

Предлагаемый способ восстановления наплавкой поверхностей тел вращения осуществляют следующим образом.

Деталь (тело вращения) устанавливают на наплавочный станок и приводят во вращение. Осуществляют предварительный и/или сопутствующий подогрев тела вращения. Электродуговую наплавку поверхности тела первым слоем ведут по винтовой линии обратно-ступенчатым способом. Наплавку последующих слоев металла ведут поперечно колеблющимся электродом до восстановления нормального размера с припуском на механическую обработку. При необходимости выполняют вариант с наложением на колебания поперечно колеблющегося электрода более высокочастотных ультразвуковых колебаний частотой не менее 15 кГц. После наплавки деталь подвергают термической обработке. Во время охлаждения наплавленного тела при его термической обработке возможно использование ультразвукового воздействия. Далее проводят механическую обработку поверхности тела вращения, в том числе с использованием в ней геомодификаторов трения.

Пример:

Наплавка поверхности тела вращения (вала насоса диаметром 120 мм) производилась на переоборудованном токарно-винторезном станке, на котором также имелась наплавочная головка с подающим механизмом для подачи электрода (электродной проволоки) и присадочной проволоки. Число оборотов шпинделя составляло 1,33 мин-1. Наплавка велась под слоем флюса плавящимся электродом со скоростью подачи 2,1 м/мин. Режим наплавки состоял из силы тока 180-185 А и напряжения 32 В.

В таблице приведены результаты изменения показателей (искажение размеров и формы наплавляемого тела вращения, наличие трещин в наплавке, размеры припусков на механическую обработку, уровень шума в рабочем помещении), полученных в результате применения нового способа восстановления наплавкой поверхностей тел вращения относительно способа, выбранного в качестве прототипа.

Полученные при использовании способа восстановления наплавкой поверхностей тел вращения результаты показали снижение и предотвращение искажений размеров и формы наплавляемой детали, предотвращение появлений трещин в наплавке, снижение размеров припусков на механическую обработку и уровня шума в рабочем помещении.

Похожие патенты RU2660537C1

название год авторы номер документа
СПОСОБ ВОССТАНОВЛЕНИЯ НАПЛАВКОЙ РОЛИКОВ МАШИН НЕПРЕРЫВНОГО ЛИТЬЯ ЗАГОТОВОК 2017
  • Галкин Валерий Дмитриевич
  • Васючков Александр Викторович
  • Девятченко Станислав Андреевич
  • Нефедьев Сергей Павлович
  • Дёма Роман Рафаэлевич
  • Харченко Максим Викторович
  • Ганин Дмитрий Рудольфович
RU2668645C1
СПОСОБ ВОССТАНОВЛЕНИЯ ШЕЕК ЧУГУННЫХ ВАЛКОВ 2005
  • Скорохватов Николай Борисович
  • Синев Олег Валентинович
  • Смирнов Владимир Сергеевич
  • Митюшов Сергей Николаевич
  • Тяпаев Олег Вячеславович
  • Трайно Александр Иванович
RU2283709C2
СПОСОБ НАПЛАВКИ ТРУЩИХСЯ И УПЛОТНИТЕЛЬНЫХ ПОВЕРХНОСТЕЙ ИЗНОСОСТОЙКИМИ МАТЕРИАЛАМИ 1996
  • Шуляковский О.Б.
  • Гусев Р.И.
  • Венков В.В.
  • Добринов Н.И.
  • Шевелкин В.И.
  • Шанин Е.Н.
RU2089361C1
СПОСОБ ВОССТАНОВЛЕНИЯ ЧУГУННЫХ ПРОКАТНЫХ ВАЛКОВ С ПОВРЕЖДЕННЫМИ ШЕЙКАМИ 2004
  • Гейер Владимир Васильевич
  • Овчинников Владимир Сергеевич
  • Вяткин Роман Викторович
  • Колобов Владимир Константинович
  • Тяпаев Олег Вячеславович
  • Трайно Александр Иванович
RU2281846C1
СПОСОБ ВОССТАНОВЛЕНИЯ ПРОКАТНЫХ ВАЛКОВ 2001
  • Сарычев И.С.
  • Пименов А.Ф.
  • Трайно А.И.
  • Меринов В.П.
RU2202422C2
СПОСОБ РЕМОНТА ТРЕФОВ ЧУГУННЫХ ПРОКАТНЫХ ВАЛКОВ 2006
  • Киричков Анатолий Александрович
  • Стаканчиков Владимир Владимирович
  • Зудов Александр Федорович
  • Полуэктов Александр Адольфович
  • Коротков Владимир Александрович
  • Михайлов Игорь Дмитриевич
  • Трайно Александр Иванович
  • Тяпаев Олег Вячеславович
RU2335387C2
СПОСОБ ВОССТАНОВЛЕНИЯ ПРОКАТНЫХ ВАЛКОВ 2003
  • Скорохватов Н.Б.
  • Смирнов В.С.
  • Петухов И.П.
  • Трайно А.И.
  • Тяпаев О.В.
RU2245771C2
Способ упрочнения стальных деталей 1981
  • Коньков Юрий Дмитриевич
  • Игумнов Валерий Павлович
SU969757A1
СПОСОБ ВОССТАНОВЛЕНИЯ ПРОКАТНОГО ВАЛКА 2002
  • Скорохватов Н.Б.
  • Глухов В.В.
  • Голованов А.В.
  • Смирнов В.С.
  • Соболев В.Ф.
  • Трайно А.И.
  • Тяпаев О.В.
RU2218220C1
СПОСОБ ВОССТАНОВЛЕНИЯ НАПЛАВКОЙ ПЛУНЖЕРА ГИДРОЦИЛИНДРА ПОДУШЕК ВАЛКОВ 2006
  • Синев Олег Валентинович
  • Смирнов Владимир Сергеевич
  • Митюшов Сергей Николаевич
  • Трайно Александр Иванович
  • Тяпаев Олег Вячеславович
  • Чикинова Ольга Евгеньевна
RU2327555C1

Реферат патента 2018 года СПОСОБ ВОССТАНОВЛЕНИЯ НАПЛАВКОЙ ПОВЕРХНОСТЕЙ ТЕЛ ВРАЩЕНИЯ

Изобретение может быть использовано для восстановления наплавкой изношенных поверхностей тел вращения. Электродуговую наплавку первого слоя износостойкого материала ведут по винтовой линии обратно-ступенчатым способом. Наплавку остальных слоев ведут поперечно колеблющимся электродом. После термообработки осуществляют механическую обработку наплавленной поверхности с использованием геомодификаторов трения. В качестве геомодификаторов трения используют вводимые со смазкой порошки, включающие серпентиниты и/или шунгиты. При наплавке слоев поперечно колеблющимся электродом на колебания электрода могут быть наложены высокочастотные ультразвуковые колебания частотой не менее 15 кГц. Ультразвуковое воздействие может осуществляться во время охлаждения тела при его термической обработке. Подогрев тела осуществляют предварительный и/или сопутствующий. Сопутствующий подогрев начинают со стороны, противоположной наплавке, и перемещают источник сопутствующего подогрева в направлении наплавки. Использование изобретения предотвращает искажение размеров и формы наплавляемой детали, предотвращает появление трещин в наплавке, снижает размеры припусков на механическую обработку. 5 з.п. ф-лы, 1 табл., 1 пр.

Формула изобретения RU 2 660 537 C1

1. Способ восстановления наплавкой поверхности тела вращения, включающий подогрев тела вращения, электродуговую наплавку на его поверхность износостойкого материала, термическую и механическую обработку наплавленной поверхности, отличающийся тем, что электродуговую наплавку первого слоя износостойкого материала ведут по винтовой линии обратно-ступенчатым способом, наплавку остальных слоев ведут поперечно колеблющимся электродом, а механическую обработку наплавленной поверхности осуществляют с использованием геомодификаторов трения.

2. Способ по п. 1, отличающийся тем, что при наплавке слоев поперечно колеблющимся электродом на колебания электрода накладывают высокочастотные ультразвуковые колебания частотой не менее 15 кГц.

3. Способ по п. 1 или 2, отличающийся тем, что при термической обработке тела вращения в процессе его охлаждения используют ультразвуковое воздействие.

4. Способ по п. 1, отличающийся тем, что подогрев тела вращения осуществляют предварительный и/или сопутствующий.

5. Способ по п. 4, отличающийся тем, что сопутствующий подогрев начинают со стороны, противоположной наплавке, и перемещают источник сопутствующего подогрева в направлении наплавки.

6. Способ по п. 1 или 2, отличающийся тем, что в качестве геомодификаторов трения используют вводимые со смазкой порошки, включающие серпентиниты и/или шунгиты.

Документы, цитированные в отчете о поиске Патент 2018 года RU2660537C1

СПОСОБ ВОССТАНОВЛЕНИЯ РОЛИКОВ 2005
  • Панов Виктор Викторович
  • Корнеев Виктор Михайлович
  • Александров Никита Витальевич
  • Боровков Игорь Всеволодович
  • Козлов Анатолий Павлович
  • Санталов Александр Григорьевич
  • Трайно Александр Иванович
  • Тяпаев Олег Вячеславович
  • Кащенко Филипп Данилович
RU2291040C1
СПОСОБ ШИРОКОСЛОЙНОЙ НАПЛАВКИ 0
  • Д. М. Кушнерев, И. В. Хова В. А. Лапченко, В. Г. Свецинский, В. В. Ковалевский, В. В. Головко, В. Подгаецкий, В. Я. Андреев Р. В. Павлова
SU407676A1
СПОСОБ ВОССТАНОВЛЕНИЯ БУРИЛЬНОЙ ТРУБЫ 2006
  • Тахаутдинов Шафагат Фахразович
  • Щелков Федор Лазаревич
  • Дмитриев Анатолий Валентинович
  • Вакула Андрей Ярославович
  • Алеткин Юрий Михайлович
  • Захаров Леонид Владимирович
  • Дмитриев Артем Анатольевич
  • Глазов Виктор Васильевич
  • Дьяков Александр Николаевич
  • Смирнов Николай Владимирович
RU2308364C1
Способ определения содержания посторонних примесей в благородных и индиферентных газах 1936
  • Рогинский С.З.
  • Шехтер А.Б.
SU51394A1
РУЧНАЯ СЕЯЛКА ОВОЩНЫХ И ЗЕЛЕНЫХ КУЛЬТУР 1994
  • Липов Юрий Нойевич
  • Доронин Владимир Петрович
RU2076560C1

RU 2 660 537 C1

Авторы

Галкин Валерий Дмитриевич

Васючков Александр Викторович

Девятченко Станислав Андреевич

Нефедьев Сергей Павлович

Дёма Роман Рафаэлевич

Тютеряков Наиль Шаукатович

Ганин Дмитрий Рудольфович

Даты

2018-07-06Публикация

2017-07-18Подача