Система управления для стенда прочностных испытаний Российский патент 2018 года по МПК G01M5/00 G01M17/00 

Описание патента на изобретение RU2661067C1

Предлагаемое изобретение относится к области измерительной и испытательной техники и может быть использовано для формирования переменных нагрузок в циклических программных испытаниях для определения надежности и эксплуатационного ресурса авиационных конструкций. Совершенствование методов и средств натурных ресурсных испытаний конструкций авиационной, ракетной и космической техники является важной составной частью мер, направленных на повышение надежности и обеспечения заданного эксплуатационного ресурса разрабатываемых аппаратов и систем, поэтому актуальной проблемой является увеличения точности реализации нагрузки в процессе испытаний. Целью изобретения является повышенные точности воспроизведения заданной программы силового нагружения конструкций.

Известен способ стабилизации планера самолета в пространстве при прочностных испытаниях и устройство для его осуществления (патент RU 2562672 С2). Указанное устройство содержит датчики перемещения по крену, расположенные в корне крыла, и датчики перемещения по тангажу, установленные в носовой и хвостовой частях фюзеляжа, каналы нагружения и систему автоматического управления. Каналы нагружения содержат сервоприводы с электрогидравлическими распределителями, гидроцилиндры, тензодинамометры. Описание указанного способа прочностных испытаний и устройств для его реализаций также дано в книге Щербань К.С. Ресурсные испытания натурных конструкций самолетов - М.: Изд-во физико-математической литературы, 2001. - с. 159-162.

Управление сервоприводами в данном устройстве осуществляется с помощью системы автоматического управления, в которой обычно используются такие типовые алгоритмы управления, как пропорционально-интегральный (ПИ) регулятор или пропорционально-интегрально-дифференциальный (ПИД) регулятор.

Однако указанная система управления стендом испытаний авиационных конструкций обладает таким недостатком, как возникновение высокочастотных колебаний при изменении направления движения штока гидроцилиндра, что ведет к снижению точности формирования заданной величины силового нагружения конструкций.

Известна система управления нагружением для ресурсных испытаний конструкций (патент RU 1646410 А1), которая содержит задатчик, регулятор, сумматор, силовой привод, объект нагружения и датчик нагружения. В данной системе был введен блок коррекции, в котором формируется дополнительный сигнал в канал управления, величина которого зависит от производной опорного сигнала и ошибки на выходе сумматора.

Однако данная система управления обладает тем же недостатком, а именно возникновение высокочастотных колебаний при изменении направления движения штока гидроцилиндра, что ведет к снижению точности формирования заданной величины силового нагружения конструкций.

Кроме того, известна система управления стендом (SU 1423979 А1), содержащая объект регулирования (нагружаемая конструкция), исполнительный механизм (гидропривод), электрогидравлический распределитель, гидроцилиндр, датчик обратной связи (динамометр), измеритель рассогласования с суммирующим входом и вычитающим входам, задатчик опорной величины силового нагружения. Данная система управления стендом принята за прототип.

Однако указанная система управления стендом испытаний авиационных конструкций обладает тем же недостатком, а именно возникновение высокочастотных колебаний при изменении направления движения штока гидроцилиндра, что не позволяет обеспечить требования на высокую точность формирования заданной величины силового нагружения конструкций.

Целью изобретения является повышение точности системы силового нагружения конструкций и снижение амплитуды высокочастотных колебаний, возникающих при изменении направления движения штока гидроцилиндра.

Поставленная цель достигается тем, что в систему управления для стенда прочностных испытаний, содержащую объект регулирования, гидропривод, включающий электрогидравлический распределитель и гидроцилиндр, датчик обратной связи (динамометр), измеритель рассогласования с суммирующим входом и вычитающим входом, задатчик опорной величины силового нагружения и блок управления, введены блок оценки амплитуды высокочастотных колебаний, вычислитель и умножитель, причем вход блока амплитуды оценки высокочастотных колебаний подключен к выходу измерителя рассогласования, выход блока амплитуды оценки высокочастотных колебаний подключен на вход вычислителя, первый вход умножителя подключен к выходу блока управления, второй вход умножителя подключен к выходу вычислителя, а выход умножителя подключен на вход электрогидравлического распределителя.

Поставленная цель достигается тем, что блок оценки амплитуды высокочастотных колебаний содержит блок дифференцирования, блок выделения абсолютного значения сигнала, блок ограничения сигнала и фильтр, причем вход блока дифференцирования подключен к выходу измерителя рассогласования, выход блока дифференцирования подключен ко входу блока выделения абсолютного значения сигнала, выход блока выделения абсолютного значения сигнала подключен ко входу устройства ограничения, выход которого подключен ко входу фильтра, а выход фильтра подключен на вход вычислителя.

На фиг. 1 показана структурная схема системы управления стенда прочностных испытаний.

На фиг. 2 - блок оценки амплитуды высокочастотных колебаний.

На фиг. 3 - функциональный график устройства ограничения.

На фиг. 4 - структурная схема системы управления без блоков подстройки коэффициента усилений контура регулирования.

На фиг. 5 - график сигнала у на выходе динамометра 5 для схемы, изображенной на фиг. 4.

На фиг. 6 - график сигнала u на входе электрогидравлического распределителя 3 для схемы, изображенной на фиг. 4.

На фиг. 7- график сигнала е на выходе измерителя рассогласования 6 для схемы, изображенной на фиг. 4.

На фиг. 8 график сигнала у на выходе динамометра 5 для схемы, изображенной на фиг. 1.

На фиг. 9 - график сигнала u на входе электрогидравлического распределителя 3 для схемы, изображенной на фиг. 1.

На фиг. 10 - график сигнала е на выходе измерителя рассогласования 6 для схемы, изображенной на фиг. 1.

Система управления стенда прочностных испытаний включает в себя объект регулирования 1 (нагружаемая конструкция), исполнительный механизм 2 (гидропривод), электрогидравлический распределитель 3, гидроцилиндр 4, датчик 5 обратной связи (динамометр), измеритель рассогласования 6 с суммирующим входом и вычитающим входом, задатчик опорной величины силового нагружения 7, блок управления 8, блок оценки амплитуды высокочастотных колебаний 9, вычислитель 10, умножитель 11, блок дифференцирования 12, блок выделения абсолютного значения сигнала 13, блок ограничения сигнала 14 и фильтр 15.

Предлагаемая система управления (фиг. 1) работает следующим образом. При возникновении высокочастотных колебаний в системе управления в блоке 9 осуществляется оценка амплитуды этих колебаний, значение этой оценки поступает на вычислитель 10. На выходе вычислителя 10 формируется сигнал в обратной зависимости от величины входного сигнала вычислителя 10. Выходной сигнал вычислителя 10 поступает на второй вход умножителя 11, в результате чего осуществляется уменьшение коэффициента усиления в канале управления при возникновении высокочастотных колебаний. Таким образом, достигается ограничение амплитуды колебаний при одновременном сохранении требований на точность воспроизведения циклограммы силового нагружения.

Блок оценки амплитуды высокочастотных колебаний (фиг. 2) работает следующим образом. Вход блока дифференцирования 12 подключен к выходу измерителю рассогласования 6, выход блока дифференцирования 12 подключен ко входу блока 13 для выделения абсолютного значения сигнала с выхода блока дифференцирования 12, выход блока 13 подключен на вход устройства ограничения 14, выход устройства ограничения 14 подключен ко входу фильтра 15, где выход фильтра 15 подключен на вход вычислителя 10.

Для реализации блока дифференцирования 12 используется динамическое звено с передаточной функции вида:

,

где Тх выбирается достаточно малой величины с учетом условия , здесь ƒ частота возникающих высокочастотных колебаний, которая определяется свойствами гидропривода.

Блок 13 для выделения абсолютного значения сигнала с выхода блока дифференцирования 12 реализует зависимость между входным сигналом х и выходным сигналом х1 следующего вида: х1=|х|,

Устройства ограничения 14 реализуют функциональную зависимость:

,

график которой представлен на Фиг. 3.

Величина нижнего порога а1 выбирается исходя из допустимого уровня амплитуды высокочастотных колебаний и уровня помех в канале управления, а выбор величины верхнего порога а2, осуществляется исходя из допустимой степени уменьшения коэффициента усиления в канале управления.

Для реализации фильтра 15 используется динамическое звено с передаточной функции, вида:

,

где Tz выбирается, например, с учетом условия .

Вычислитель 10 выполнен в виде функционального блока, реализующего обратно пропорциональную зависимость между выходным сигналом и входным сигналом:

,

где z выход блока оценки амплитуды высокочастотных колебаний 9,

х2 - выход устройства ограничения 14.

Предложенная система управления была апробирована на стенде прочностных испытаний.

Первоначально эксперимент был проведен для системы без блоков подстройки коэффициента усилений контура регулирования в соответствии со схемой (фиг. 4), где в блоке управления 8 был использован пропорционально-интегральный регулятор с передаточной функцией вида , где K1=0.543, К2=0.678. Результаты эксперимента для этой схемы приведены на фиг. 5-7.

Затем эксперимент был поведен на стенде с системой управления с блоками подстройки (фиг. 1). По результатам проведенных экспериментов на стенде с данной системой управления (фиг. 8-10), следует, что предлагаемая система управления позволяет уменьшить амплитуду высокочастотных колебаний примерно в 3-5 раз и одновременно позволяет сохранить высокую точность воспроизведения заданной диаграммы силового нагружения авиационных конструкций.

Похожие патенты RU2661067C1

название год авторы номер документа
СИСТЕМА УПРАВЛЕНИЯ ДЛЯ СТЕНДА ПРОЧНОСТНЫХ ИСПЫТАНИЙ 2021
  • Юркевич Валерий Дмитриевич
  • Трубин Максим Витальевич
  • Трубин Виталий Геннадьевич
RU2772243C1
Моделирующий комплекс для отладки системы управления автономным подвижным объектом 2017
  • Каманин Валерий Владимирович
  • Юрескул Андрей Григорьевич
  • Попадьин Александр Николаевич
RU2662331C1
Устройство для испытания на случайные вибрации 1984
  • Беглов Юрий Иванович
  • Гвоздев Александр Николаевич
  • Кощеев Александр Аркадьевич
  • Степанов Юрий Александрович
  • Чернышев Валерий Александрович
SU1227963A1
СИСТЕМА ДЛЯ ПРОГНОЗИРОВАНИЯ РЕЗУЛЬТАТОВ НАТУРНЫХ ИСПЫТАНИЙ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА 2000
  • Никольцев В.А.
  • Коржавин Г.А.
  • Подоплекин Ю.Ф.
  • Симановский И.В.
  • Войнов Е.А.
  • Приходько В.В.
  • Каманин В.В.
  • Андриевский В.Р.
  • Ефремов Г.А.
  • Леонов А.Г.
  • Царев В.П.
  • Бурганский А.И.
  • Зимин С.Н.
RU2160927C1
Устройство для автоматического нагружения конструкций при испытаниях на прочность 1988
  • Азарин Владимир Соломонович
  • Аристов Виктор Николаевич
  • Дудник Михаил Федорович
  • Паценкер Борис Львович
  • Тимченко Владимир Иванович
  • Хильченко Алексей Григорьевич
SU1504562A1
Гидросистема для нагружения конструкций при прочностных испытаниях 2016
  • Лебедев Константин Нитович
  • Никитин Николай Романович
  • Римский Павел Витальевич
  • Крошихин Дмитрий Сергеевич
  • Уфимцев Никита Викторович
  • Маринин Владимир Иванович
  • Семенченко Иван Гаврилович
  • Бутов Александр Иванович
RU2644443C1
Устройство для регулирования жесткости прокатной клети 1977
  • Данилюк Валерий Владимирович
  • Тищенко Владимир Александрович
  • Чабанов Алим Иванович
  • Выдрин Владимир Николаевич
  • Агеев Леонид Матвеевич
  • Иванов Иван Васильевич
  • Тропин Сергей Николаевич
  • Михайлов Сергей Алексеевич
SU749479A1
Автоматизированная система управления блочно-модульного построения нагружателем гидравлическим в стендах прочностных испытаний 2016
  • Варганов Олег Владимирович
  • Варнин Алексей Петрович
  • Соломадин Владимир Валерьевич
  • Усенко Евгений Сергеевич
  • Филинков Юрий Матвеевич
  • Черников Дмитрий Сергеевич
RU2643198C1
Стенд для коррозионно-прочностных испытаний лопатки газотурбинного двигателя 2019
  • Андрюшкин Александр Юрьевич
  • Левихин Артем Алексеевич
  • Мещеряков Станислав Андреевич
  • Киршин Антон Юрьевич
  • Киршина Алена Андреевна
RU2724295C1
Система управления 1987
  • Каляев Евгений Александрович
  • Лукьяненко Станислав Николаевич
SU1423979A1

Иллюстрации к изобретению RU 2 661 067 C1

Реферат патента 2018 года Система управления для стенда прочностных испытаний

Изобретение относится к области измерительной и испытательной техники и может быть использовано для формирования переменных нагрузок в циклических программных испытаниях для определения надежности и эксплуатационного ресурса авиационных конструкций. Система управления для стенда прочностных испытаний содержит объект регулирования, гидропривод, включающий электрогидравлический распределитель и гидроцилиндр, датчик обратной связи (динамометр), измеритель рассогласования с суммирующим входом и вычитающим входом, задатчик опорной величины силового нагружения и блок управления. Система управления дополнительно содержит блок оценки амплитуды высокочастотных колебаний, вычислитель и умножитель, причем вход блока амплитуды оценки высокочастотных колебаний подключен к выходу измерителя рассогласования, выход блока амплитуды оценки высокочастотных колебаний подключен на вход вычислителя, первый вход умножителя подключен к выходу блока управления, второй вход умножителя подключен к выходу вычислителя, а выход умножителя подключен на вход электрогидравлического распределителя. Технический результат - повышение точности воспроизведения заданной программы силового нагружения конструкций. 1 з.п. ф-лы, 10 ил.

Формула изобретения RU 2 661 067 C1

1. Система управления для стенда прочностных испытаний, содержащая объект регулирования, гидропривод, включающий электрогидравлический распределитель и гидроцилиндр, датчик обратной связи (динамометр), измеритель рассогласования с суммирующим входом и вычитающим входом, задатчик опорной величины силового нагружения и блок управления, отличающаяся тем, что в нее введены блок оценки амплитуды высокочастотных колебаний, вычислитель и умножитель, причем вход блока амплитуды оценки высокочастотных колебаний подключен к выходу измерителя рассогласования, выход блока амплитуды оценки высокочастотных колебаний подключен на вход вычислителя, первый вход умножителя подключен к выходу блока управления, второй вход умножителя подключен к выходу вычислителя, а выход умножителя подключен на вход электрогидравлического распределителя.

2. Система управления по п. 1, отличающаяся тем, что блок оценки амплитуды высокочастотных колебаний содержит блок дифференцирования, блок выделения абсолютного значения сигнала, блок ограничения сигнала и фильтр, причем вход блока дифференцирования подключен к выходу измерителя рассогласования, выход блока дифференцирования подключен ко входу блока выделения абсолютного значения сигнала, выход блока выделения абсолютного значения сигнала подключен ко входу устройства ограничения, выход которого подключен ко входу фильтра, а выход фильтра подключен на вход вычислителя.

Документы, цитированные в отчете о поиске Патент 2018 года RU2661067C1

Диссертация на тему: "СОВЕРШЕНСТВОВАНИЕ МЕТОДОВ И СРЕДСТВ НАТУРНЫХ РЕСУРСНЫХ ИСПЫТАНИЙ КОНСТРУКЦИЙ ПАССАЖИРСКИХ САМОЛЁТОВ", 2014
СТЕНД ДЛЯ ИСПЫТАНИЙ НА ПРОЧНОСТЬ 2013
  • Бобров Александр Викторович
  • Бурцев Сергей Иванович
  • Дубовицкий Владимир Игоревич
  • Зизекалов Андрей Александрович
  • Лопухов Игорь Иванович
RU2529733C1
Устройство для прочностных испытаний силовых конструкций и их составных элементов 1983
  • Локтионов Виктор Петрович
  • Задеев Евгений Павлович
  • Ткаченко Изабелла Петровна
  • Головня Виктор Петрович
  • Дриц Александр Борисович
  • Прохоров Владимир Михайлович
SU1665262A1
СТЕНД ДЛЯ ИСПЫТАНИЙ КОНСТРУКЦИЙ НА ПРОЧНОСТЬ И СПОСОБ ЕГО СБОРКИ И НАСТРОЙКИ 2003
  • Европейцев А.А.
  • Мажирин В.Ф.
  • Подзоров В.Н.
  • Качкин А.А.
  • Иванов Н.Н.
RU2249803C1
CN 103115768 B, 01.07.2015
US 4062234 A1, 13.12.1977.

RU 2 661 067 C1

Авторы

Лапердин Александр Игоревич

Юркевич Валерий Дмитриевич

Даты

2018-07-11Публикация

2017-03-28Подача