СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА ГОРОДСКОЙ ЗАСТРОЙКИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ Российский патент 2018 года по МПК B64C39/00 G05D1/00 B64C19/00 

Описание патента на изобретение RU2661269C2

Изобретение относится к способам траекторного управления беспилотными летательными аппаратами (БЛА) и может быть использовано для повышения их безопасности при выполнении маловысотных полетов.

Повышение живучести летательных аппаратов в процессе управления ЛА [1] является одной из основных тенденций развития систем с БЛА. Одним из направлений повышения живучести БЛА при совершении маловысотных полетов (МВП) в условиях местности с типичной городской застройкой является облет групп препятствий в вертикальной плоскости. В пилотируемых летательных аппаратах (ЛА) для осуществления МВП над пересеченной местностью и местностью с городской застройкой используется специальный радиолокационный комплекс - радиоэлектронная система управления маловысотным полетом (РЭСУ МВП), основной задачей которой является формирование профильного полета ЛА, при котором траектория полета летательного аппарата повторяет профиль рельефа местности. Важно отметить, что РЭСУ МВП должна обеспечивать решение задач в любое время года, суток и любых метеоусловиях. Указанные требования предопределяют многоканальный принцип построения вычислительной системы радиолокационного комплекса с использованием РЛС для определения расстояния до препятствий и радиовысотомеров для контроля текущей высоты [2]. Таким образом, в состав указанной системы входит оборудование, которое характеризуется достаточно большими массогабаритными и стоимостными характеристиками. Очевидно, что применение аналогичного комплекса в составе бортового оборудования БЛА представляется нецелесообразным по критерию «стоимость-эффективность». Кроме того, при решении некоторых специальных задач использование активного радиолокатора не рекомендуется, так как это может служить сильным демаскирующим фактором.

В существующих системах с БЛА [2] (прототип) (см. фиг. 1), включающих пункт управления 1 и беспилотный летательный аппарат 2, для облета объектов городской застройки 3 при маловысотном полете, как правило, используется маршрутный метод, который осуществляется в два этапа. На первом (подготовительном) этапе диспетчером (оператором, офицером боевого управления) намечается ряд контрольных точек 4, которые должен пройти БЛА с заданным углом наклона траектории. Далее для обеспечения последовательного прохождения БЛА намеченных точек в штурманском расчете реализуются алгоритмы наведения на неподвижные цели (поочередно на каждую соответствующую контрольную точку). На втором этапе осуществляется непосредственно управление летательным аппаратом 2 для обхода группы препятствий в вертикальной плоскости 3 по рассчитанным траекториям 5 при помощи команд управления с диспетчерского (командного) пункта управления 1. Процедуру существующего способа облета группы препятствий летательным аппаратом иллюстрирует фиг. 1.

Следует отметить, что такой способ облета групп препятствий, связанный с нанесением контрольных точек, предполагает непосредственное участие человека и представляет собой довольно трудоемкую задачу, поскольку такие действия необходимо производить для каждого БЛА. При этом нанесение таких точек требует наличия большого опыта у оператора, и, в общем случае, это является нетривиальной задачей.

Техническим результатом предлагаемого изобретения является повышение живучести БЛА за счет использования командного управления и автоматизации процесса облета групп препятствий в вертикальной плоскости при маловысотном полете БЛА по запланированному маршруту.

Заявленный технический результат достигается за счет того, что при планировании маршрута полета БЛА каждое препятствие группы в вертикальной плоскости аппроксимируется прямоугольником, расположенным в верхней части координатной плоскости OXY, одна из сторон которого лежит на оси ОХ (совпадающей с нулевой выстой). Оператор для описания выбранного препятствия указывает только центр такого прямоугольника и длины его сторон. Далее осуществляется непосредственно управление летательным аппаратом с обходом групп препятствий путем коррекции рассчитанной траектории наведения.

Возможность достижения технического результата обусловлена следующими причинами:

- существенным уменьшением времени описания оператором препятствий, что снижает нагрузку на оператора [3];

- универсальным (однотипным) способом описания препятствий, что дает возможность применять традиционные методы управления летательными аппаратами [2].

Вариант взаимного расположения управляемого летательного аппарата и группы препятствий иллюстрирует фиг. 2, на которой летательный аппарат движется равномерно со скоростью VЛА, прямолинейно и параллельно земной поверхности на заданной высоте Н. Препятствия имеют вид типичных объектов городской застройки.

Для таких условий одним из возможных способов управления, повышающим живучесть беспилотного летательного аппарата, является новый способ, полученный на основе математического аппарата метода обратных задач динамики [4] с использованием результатов [7], в котором траектория управляемого БЛА корректируется при сближении его с группой препятствий путем совмещения его вектора скорости с касательной, построенной к желаемой траектории. Вычисление требуемого приращения угла наклона траектории (параметра рассогласования) управляемого БЛА производится по правилу:

где переменные w1 и w2 вычисляются путем дифференцирования функции ψ(х,у) от координат БЛА. Система координат OXY выбирается таким образом, чтобы координата у соответствовала высоте полета, а направление оси координат х - направлению полета БЛА. Выражение для переменных w1 и w2 имеет вид:

Функция ψ(х,у) - функция тока потока идеальной жидкости при обтекании нескольких прямоугольных параллелепипедов, которая может быть получена на основе положений теории функций комплексного переменного и выражения для комплексного потенциала бесциркуляционного обтекания нескольких прямоугольных параллелепипедов, будучи выделена как его мнимая часть.

Выражение для комплексного потенциала и зависимости для функции тока и потенциала скорости результирующего потока идеальной жидкости, в свою очередь, с использованием конформного отображения внешности сечения прямоугольного параллелепипеда на внешность кругового цилиндра [5, 6, 7], в рассматриваемом случае записываются следующим образом:

где z=x+iy - комплексная переменная на комплексной плоскости OXY, N - количество аппроксимирующих объекты прямоугольников,

- угол, зависящий от соотношения сторон j-ого прямоугольника (Xj - длина, Yj - высота прямоугольника), V и - скорость БЛА (до и после облета рельефа) и его сопряженная скорость, соответственно; , z0j=x0j+iy0j0j, y0j - смещение центра j-ого прямоугольника относительно начала выбранной системы координат OXY), .

Указанные параметры определяются на диспетчерском пункте (ДП).

Корректировка угла наклона траектории БЛА начинается тогда, когда расстояние от управляемого БЛА до центра аппроксимирующего препятствие прямоугольника становится меньше определенной величины:

где хП и уП - координаты центра прямоугольника аппроксимации; х и у - координаты БЛА; L - заданное расстояние.

Примерный вид траектории облета 7 группы препятствий, которые аппроксимированы прямоугольниками 6, представлен на фиг. 3. Здесь же показано требуемое приращение Δϑ угла наклона траектории (параметра рассогласования) управляемого БЛА, сформированного по правилу (1).

Таким образом, для коррекции угла наклона траектории при облете групп препятствий в вертикальной плоскости описанным способом (1) - (4) необходимо учитывать:

1) параметры движения БЛА - координаты х и у, значение

2) параметры групп препятствий - координаты центров прямоугольников аппроксимации z0j и длины их сторон Xj и Yj.

Величины, необходимые для реализации (1) - (4) и составляющие первую группу параметров, измеряются штатными средствами на диспетчерских пунктах, а величины, составляющие вторую группу, расположены в памяти ЭВМ КП ВП, куда они заносятся непосредственно диспетчером (оператором, офицером боевого управления).

Коррекция угла наклона траектории управляемого БЛА прекращается, когда его высота становится равной начальной (заданной) высоте Н полета беспилотного летательного аппарата, определяемой запланированным маршрутом полета.

Спецификой описанного способа является то, что зависимости (1) - (4) построены на основе аппроксимации групп препятствий в вертикальной плоскости. Такой подход позволяет унифицировать и автоматизировать процесс описания препятствий, тем самым существенно снизив нагрузку на диспетчера.

Заявленный технический результат обеспечивается предлагаемым способом (1) - (4) управления беспилотным летательным аппаратом, а также использованием универсального (однотипного) способа описания групп препятствий в вертикальной плоскости, что дает возможность существенно уменьшить время описания рельефа городской застройки диспетчером, тем самым снизив нагрузку на него.

Таким образом, указанный технический результат достигается тем, что на основе измеренных значений скорости полета VЛА и высоты полета Н беспилотного ЛА, а также заданных диспетчером (оператором, офицером боевого управления) значений координат центров прямоугольников аппроксимации и их сторон, с использованием (3), вычисляется функция тока ψ(х,у). Затем с помощью (2) определяются значения переменных w1 и w2, на основании которых и измеренного значения текущего угла наклона траектории ϑ, с помощью (1) формируется сигнал требуемого приращения угла наклона траектории Δϑ для БЛА, позволяющий произвести облет группы объектов городской застройки.

Это позволяет использовать описанный способ управления для коррекции траекторий полета летательных аппаратов при облете ими групп объектов городской застройки в вертикальной плоскости при маловысотном полете.

ЛИТЕРАТУРА

[1] Верба В.С. Авиационные комплексы радиолокационного дозора и наведения. Состояние и тенденции развития. М.: Радиотехника. 2008. 432 с.

[2] Авиационные системы радиоуправления. Т. 3. Системы командного радиоуправления. Автономные и комбинированные системы наведения / В.И. Меркулов, А.И. Канащенков [и др.]. М.: Радиотехника, 2004. 317 с.

[3] Авиация ПВО России и научно-технический прогресс. Боевые комплексы и системы вчера, сегодня, завтра / Е.А. Федосов [и др.]. М.: Дрофа, 2001.

[4] Крутько П.Д. Обратные задачи динамики в теории автоматического управления. М.: Машиностроение, 2004.

[5] Лойцянский Л.Г. Механика жидкости и газа. Физматгиз, 1959.

[6] Лаврентьев М.А., Шабат Б.В. Методы теории функций комплексного переменного. М.: Наука, 1965, 716 с.

[7] Сузанский Д.Н., Попов В.Ю. Способ построения опорной траектории движения сложной системы // Труды XV Международной конференции «Проблемы управления и моделирования в сложных системах». Самара: Самарский научный центр РАН, 2013. С. 543-547.

Похожие патенты RU2661269C2

название год авторы номер документа
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА РЕЛЬЕФА МЕСТНОСТИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ 2014
  • Верба Владимир Степанович
  • Меркулов Владимир Иванович
  • Сузанский Дмитрий Николаевич
  • Иванова Ольга Алексеевна
  • Попов Виктор Юрьевич
RU2571845C1
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ ГРУППОЙ БЕСПИЛОТНЫХ ЛЕТАТЕЛЬНЫХ АППАРАТОВ ПРИ МОНИТОРИНГЕ ГОРОДСКОЙ ЗАСТРОЙКИ 2021
  • Сузанский Дмитрий Николаевич
  • Уголев Денис Эдуардович
  • Дрозд Александр Степанович
  • Благодарящев Игорь Вадимович
  • Наумов Роман Сергеевич
  • Ефанов Дмитрий Евгеньевич
RU2765758C1
СПОСОБ ЗАХОДА НА ПОСАДКУ БЕСПИЛОТНОГО ЛЕТАТЕЛЬНОГО АППАРАТА В АВАРИЙНЫХ УСЛОВИЯХ 2019
  • Сузанский Дмитрий Николаевич
  • Иванова Ольга Алексеевна
  • Александровский Филипп Михайлович
RU2725640C1
АВИАНАВИГАТОР 2011
  • Джанджгава Гиви Ивлианович
  • Дроздов Алексей Павлович
  • Сазонова Татьяна Владимировна
  • Требухов Андрей Викторович
  • Шелагурова Марина Сергеевна
RU2457438C1
СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМИ АППАРАТАМИ С ОБЛЕТОМ ЗОН С НЕБЛАГОПРИЯТНЫМИ МЕТЕОРОЛОГИЧЕСКИМИ УСЛОВИЯМИ 2011
  • Васильев Александр Владимирович
  • Верба Владимир Степанович
  • Кирсанов Александр Петрович
  • Меркулов Владимир Иванович
  • Сузанский Дмитрий Николаевич
RU2490170C2
Способ построения маршрута маловысотного полета на виртуальном полигоне 2018
  • Заец Виктор Федорович
  • Кулабухов Владимир Сергеевич
  • Бублик Игорь Иванович
  • Туктарев Николай Алексеевич
  • Бублик Дмитрий Игорьевич
  • Булгаков Валерий Валерьевич
  • Кравцов Максим Сергеевич
RU2696047C1
Способ оценки маловысотного контура управления ЛА 2018
  • Заец Виктор Федорович
  • Кулабухов Владимир Сергеевич
  • Бублик Игорь Иванович
  • Туктарев Николай Алексеевич
  • Булгаков Валерий Валерьевич
  • Кравцов Максим Сергеевич
RU2691984C1
СИСТЕМА КОНТРОЛЯ И ПРЕДОТВРАЩЕНИЯ НЕСАНКЦИОНИРОВАННЫХ ПОЛЕТОВ ЛЕТАТЕЛЬНЫХ АППАРАТОВ МАЛОЙ АВИАЦИИ В ВОЗДУШНОМ ПРОСТРАНСТВЕ КРУПНЫХ ГОРОДОВ И КРИТИЧЕСКИ ВАЖНЫХ ОБЪЕКТОВ 2007
  • Урличич Юрий Матэвич
  • Моисеенко Владимир Павлович
  • Захарова Наталия Юрьевна
RU2343530C1
СИСТЕМА ЭКОЛОГИЧЕСКОГО МОНИТОРИНГА АТМОСФЕРНОГО ВОЗДУХА ГОРНОПРОМЫШЛЕННОЙ ПРОМАГЛОМЕРАЦИИ 2013
  • Пашкевич Мария Анатольевна
  • Смирнов Юрий Дмитриевич
  • Кремчеев Эльдар Абдоллович
  • Петрова Татьяана Анатольевна
  • Корельский Денис Сергеевич
RU2536789C1
Способ противодействия выполнению задач беспилотному летательному аппарату 2018
  • Парфенов Дмитрий Юрьевич
RU2679377C1

Иллюстрации к изобретению RU 2 661 269 C2

Реферат патента 2018 года СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ БЕСПИЛОТНЫМ ЛЕТАТЕЛЬНЫМ АППАРАТОМ ДЛЯ ОБЛЕТА ГОРОДСКОЙ ЗАСТРОЙКИ В ВЕРТИКАЛЬНОЙ ПЛОСКОСТИ

Изобретение относится к способу траекторного управления беспилотным летательным аппаратом (БЛА). Способ заключается в том, что производят вывод БЛА с диспетчерского пункта на траекторию с заданным углом наклона, корректируют угол наклона траектории при сближении с группой препятствий, каждое из которых аппроксимируют определенным образом. Обеспечивается повышение живучести БЛА за счет автоматизации процесса облета групп препятствий в вертикальной плоскости при маловысотном полете. 3 ил.

Формула изобретения RU 2 661 269 C2

Способ траекторного управления беспилотным летательным аппаратом (БЛА) с облетом групп объектов городской застройки в вертикальной плоскости заключается в том, что вывод БЛА на запланированную прямолинейную и параллельную земной поверхности траекторию полета производят с диспетчерского пункта (ДП) по траектории облета группы препятствий с заданным углом наклона траектории, отличающийся тем, что траекторию управляемого БЛА корректируют при сближении его с группой препятствий, каждое из которых аппроксимируют прямоугольником, для чего вычисление требуемого приращения угла наклона траектории управляемого БЛА производят по правилу:

где

здесь w1 и w2 - составляющие вектора скорости управляемого летательного аппарата; ψ(х,y) - функция координат х и y управляемого БЛА в неподвижной системе координат OXY, определяемая как мнимая часть выражения для комплексного потенциала:

где z=x+iy - комплексная переменная на комплексной плоскости OXY,

N - количество аппроксимирующих объекты прямоугольников, - угол, зависящий от соотношения сторон j-ого прямоугольника (Xj - длина, Yj - высота прямоугольника), V и - скорость БЛА (до и после облета рельефа) и его сопряженная скорость, соответственно; , z0j=x0j+iy0j (x0j, y0j - смещение центра j-ого прямоугольника относительно начала выбранной системы координат OXY), , при этом корректировку угла наклона траектории БЛА начинают тогда, когда расстояние от управляемого БЛА до центра, аппроксимирующего препятствие прямоугольника, становится меньше определенной величины L:

где хП и yП - координаты центра прямоугольника аппроксимации, x и y - координаты БЛА, и осуществляют до момента, когда высота полета БЛА становится равной начальной высоте Н.

Документы, цитированные в отчете о поиске Патент 2018 года RU2661269C2

СПОСОБ ТРАЕКТОРНОГО УПРАВЛЕНИЯ ЛЕТАТЕЛЬНЫМИ АППАРАТАМИ С ОБЛЕТОМ ЗОН С НЕБЛАГОПРИЯТНЫМИ МЕТЕОРОЛОГИЧЕСКИМИ УСЛОВИЯМИ 2011
  • Васильев Александр Владимирович
  • Верба Владимир Степанович
  • Кирсанов Александр Петрович
  • Меркулов Владимир Иванович
  • Сузанский Дмитрий Николаевич
RU2490170C2
СПОСОБ ПРЕДУПРЕЖДЕНИЯ УГРОЗЫ СТОЛКНОВЕНИЯ ЛЕТАТЕЛЬНОГО АППАРАТА С ПРЕПЯТСТВИЯМИ ПОДСТИЛАЮЩЕЙ ПОВЕРХНОСТИ 2007
  • Пятко Сергей Григорьевич
  • Красов Анатолий Иванович
  • Пацко Валерий Семенович
  • Смольникова Мария Анатольевна
RU2356099C1
US 9014880 B2, 21.04.2015
CN 104390640 A, 04.03.2015
US 7061401 B2, 13.06.2006.

RU 2 661 269 C2

Авторы

Меркулов Владимир Иванович

Сузанский Дмитрий Николаевич

Иванова Ольга Алексеевна

Попов Виктор Юрьевич

Царева Ольга Олеговна

Даты

2018-07-13Публикация

2015-08-04Подача