Способ получения 1,2-пропиленгликоля из глицерина Российский патент 2018 года по МПК C07C29/60 C07C31/20 

Описание патента на изобретение RU2663419C1

Изобретение относится к области химической технологии, в частности к получению 1,2-пропиленгликоля из глицерина гидрированием последнего.

Известны способы получения 1,2-пропиленгликоля из глицерина при его концентрации больше 20% в присутствии катализаторов, содержащих медь.

Известен способ получения 1,2-пропиленгликоля гидрированием глицерина в присутствии медь-цинкового катализатора при температуре 220-280°С и давлении 5-20 атм. Недостатком данного способа является низкая концентрация глицерина (20-60%) и использование спиртового растворителя (US 5214219, 1993).

Известен способ получения 1,2-пропиленгликоля гидрированием глицерина в присутствии медь-никель-кобальтовых катализаторов при температуре 160-260°С и давлении 5-20 атм в газовой фазе. Недостатком данного способа является большое соотношение водород/глицерин, равное 200-1100/1 и секционное испарение глицерина, что затрудняет отделение продуктов реакции, в т.ч. 1,2-пропиленгликоля и не прореагировавшего глицерина, от водорода, и громоздкое аппаратурное оформление процесса (ЕР 2043983А1, 2009, аналог Евраз. пат. 013127, 2010).

Известен способ получения 1,2-пропиленгликоля гидрированием глицерина в присутствии медного катализатора, содержащего, кроме того, кобальт, марганец и молибден. Процесс проводят при температуре 180-270°С, давлении 100-700 ати при концентрации глицерина более 80%. Недостатком способа является высокое давление, что затрудняет проведение процесса и требует больших энергетических затрат.(US 5616817, 1997, аналог DE-4442124 А).

Известен способ получения 1,2-пропиленгликоля реакцией глицерина, имеющего чистоту не менее 95 мас.%, с водородом при давлении от 20 до 100 атм и температуре от 180 до 240°С в присутствии катализатора, который содержит от 20 до 60%мас.% оксида меди, от 30 до 60 мас.% оксида цинка и от 1 до 10 мас. % оксида марганца. Реакция протекает в реакторе-автоклаве. (RU 2436761, 2011).

Известен также аналогичный способ получения 1,2-пропиленгликоля реакцией глицерина, имеющего чистоту не менее 95 мас.%, с водородом при давлении от 20 до 100 атм и температуре от 180 до 240°С в присутствии катализатора, который содержит от 10 до 50 мас.% оксида меди и от 50 до 90 мас.%, оксида цинка, который перед реакцией активируют в потоке водорода при температуре от 170 до 240°С. Реакция протекает в реакторе-автоклаве. (RU 2439047, 2012).

Недостатком указанных способов, которые отличаются только соотношением оксидов меди и цинка, является проведение процесса в автоклаве. Из примеров следует, что процесс ведется периодически. Для выделения продуктов реакции предварительно необходимо сбросить давление водорода из автоклава и отделить катализатор от реакционной массы. Перед следующей операцией снова необходимо активировать катализатор.

Наиболее близким к заявляемому является способ получения 1,2-пропиленгликоля, который заключается в гидрировании глицерина в присутствии катализатора и включает следующие стадии: предварительное нагревание сырьевой смеси, содержащей глицерин, водород и метанол, в нагревателе реагентов, подачу нагретой сырьевой смеси в реактор, разделение потока, выходящего из реактора, на поток паровой фазы и поток жидкой фазы, конденсацию потока паровой фазы с получением конденсированной жидкости, возвращение конденсированной жидкости в цикл в реактор и дистилляцию потока жидкой фазы с получением очищенного пропиленгликоля.

При этом используется катализатор, содержащий металл или оксид металла, диспергированный на инертном носителе. В качестве металла может быть использована медь. Реакция гидрирования глицерина проводится при температуре равной 150-240°С и при давлении 20-80 атм. Затем пропиленгликоль подвергается очистке в секции фракционирования для того, чтобы он соответствовал различным техническим условиям на продукт.(RU 2548907, 2015).

Способ, указанный в качестве прототипа, имеет несколько недостатков.

Во-первых, процесс проводится в присутствии метанола. Это усложняет схему реакционного узла за счет циркуляции метанола. Часть метанола уходит с продуктами реакции в систему разделения и теряется с топливным газом из колонны К-1. В приводимой в прототипе схеме не указано место ввода метанола.

Во-вторых, в схеме разделения необходима отдельная колонна К-1 для выделения метанола, что усложняет эту схему.

В-третьих, в схеме реакционного узла предусмотрен рецикл водорода на смешение с исходным водородом. Это означает, что процесс гидрирования глицерина проводится с большим избытком водорода.

Задачей настоящего изобретения является разработка способа получения 1,2-пропиленгликоля гидрированием глицерина в жидкой фазе в присутствии медьсодержащего катализатора с высокой селективностью при минимальной подаче водорода и без использования дополнительного растворителя.

Поставленная задача решается разработанным способом получения 1,2-пропиленгликоля гидрированием глицерина при повышенных давлении и температуре в присутствии медьсодержащего катализатора в реакторе. Способ отличается тем, что процесс проводят в трехфазном реакторе (газ - водород, жидкость - глицерин, твердая фаза - катализатор) при подаче глицерина и водорода в верхнюю часть реактора, при этом глицерин течет по поверхности частиц катализатора при удельном расходе 0,20-0,70 1/час. Расход водорода устанавливают на таком уровне, чтобы степень его конверсии находилась в интервале 50-90% (т.е. близкий к стехиометрическому).

При необходимости проводят рецикл непрореагировавшей части глицерина

Процесс проводят при давлении 20-30 атм и температуре 210-250°С.

В качестве медьсодержащего катализатора используют медный или медь-цинковый катализатор.

Глицерин, используемый в процессе, может содержать 10-30 мас.% воды.

Ниже приведены примеры конкретной реализации предлагаемого способа.

В реактор диаметром 18 мм, помещенный в нагревательную печь, загружено 15 мл катализатора. Глицерин и водород подаются на верх реактора, при этом глицерин течет по поверхности частиц катализатора при удельном расходе 0,20-0,70 1/час. Расход водорода устанавливают на таком уровне, чтобы степень его конверсии находилась в интервале 50-90% (т.е. близкий к стехиометрическому). Реакционная масса из реактора поступает в сепаратор, где происходит разделение газовой и жидких фаз.

Условия и результаты экспериментов приведены в таблице. Все эксперименты проведены без использования какого-либо дополнительного растворителя. Опыты 1-3 проводились в присутствии медного катализатора. В опыте 1 достигнута очень высокая селективность по 1,2-пропиленгликолю (98,1%), хотя при низкой конверсии глицерина (19,6%). На этом же катализаторе могут быть достигнуты более высокие конверсии глицерина (43,7%), но при более низкой селективности (83,0%) (опыт 2). В опыте 3 достигается более высокая конверсия глицерина (26,2%) по сравнению с опытом 1, при практически равной высокой селективности по 1,2-пропиленгликолю (96,4%), что достигается за счет уменьшения удельного расхода глицерина.

Существенно лучшие показатели получены в присутствии медь-цинкового катализатора. Так, при конверсии глицерина 96,3-97,1% селективность составляет 87,4-89,1% (опыты 5 и 6). При такой величине конверсии глицерина его рецикл в реакционный узел становится нецелесообразным из-за его малости. При более низкой конверсии глицерина (85,5%) селективность возрастает до 94,4% (опыт 4). В этих условиях рецикл непрореагировавшего глицерина может стать полезным.

В ходе проведения исследований по гидрированию глицерина в 1,2-пропиленгликоль было установлено, что нет необходимости подавать большое количество водорода против теоретически необходимого, т.е. иметь большой избыток водорода и низкую его конверсию, что приводит к его рециклу. Это усложняет схему реакционного узла и увеличивает энергопотребление. Сравнение опытов 7 и 8 показывает, что увеличение степени конверсии водорода с 25% до 76% (т.е. с 4-кратного избытка до 1,3-кратного) практически не изменяет конверсию глицерина и селективность процесса.

Опыты 9-12 также подтверждают заявленные интервалы режима работы, а также значения показателей при проведении процесса получения 1,2-пропиленгликоля.

Похожие патенты RU2663419C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ ЭТИЛЕНА 2005
  • Меньщиков Вадим Алексеевич
  • Ачильдиев Евгений Рудольфович
RU2281316C1
СПОСОБ ПОЛУЧЕНИЯ ЭТИЛАЦЕТАТА 2011
  • Меньщиков Вадим Алексеевич
  • Семенов Иван Павлович
  • Ачильдиев Евгений Рудольфович
  • Рыбина Марина Сергеевна
RU2451007C1
СПОСОБ ПОЛУЧЕНИЯ α-МЕТИЛЗАМЕЩЕННЫХ КАРБОНИЛЬНЫХ СОЕДИНЕНИЙ 2015
  • Егизарьян Аркадий Мамиконович
  • Носков Александр Степанович
  • Пирютко Лариса Владимировна
  • Русских Артем Викторович
  • Чернявский Валерий Сергеевич
  • Харитонов Александр Сергеевич
RU2594483C1
СПОСОБ КАТАЛИТИЧЕСКОГО ОКСИХЛОРИРОВАНИЯ ЭТАНА ДО ВИНИЛХЛОРИДА 1994
  • Иан Майкл Клег
  • Рей Хардман
RU2133729C1
Способ получения высокооктановых компонентов из олефинов каталитического крекинга 2015
  • Харитонов Александр Сергеевич
  • Парфенов Михаил Владимирович
  • Дубков Константин Александрович
  • Иванов Дмитрий Петрович
  • Семиколенов Сергей Владимирович
  • Чернявский Валерий Сергеевич
  • Пирютко Лариса Владимировна
  • Носков Александр Степанович
  • Головачев Валерий Александрович
  • Русецкая Кристина Андреевна
  • Кузнецов Сергей Евгеньевич
  • Клейменов Андрей Владимирович
  • Кондрашев Дмитрий Олегович
  • Мирошкина Валентина Дмитриевна
RU2609264C1
СПОСОБЫ ПРЕОБРАЗОВАНИЯ ГЛИЦЕРИНА В АМИНОСПИРТЫ 2007
  • Арредондо Виктор Манюэль
  • Корриган Патрик Джозеф
  • Сиирли Анджелла Кристин
  • Бэк Дебора Джин
  • Гибсон Майкл Стивен
  • Фэйрвезер Нейл Томас
RU2426724C2
СПОСОБ ПОЛУЧЕНИЯ ДИ-Н-ПРОПИЛАМИНА 1991
  • Якушкин М.И.
  • Пашкова Л.П.
  • Павлычев В.Н.
  • Борзенко В.И.
  • Смаева Т.П.
  • Мухаметдинов Р.М.
RU2024491C1
СПОСОБ ПОЛУЧЕНИЯ 1,2-ПРОПАНДИОЛА ГИДРОГЕНОЛИЗОМ ГЛИЦЕРИНА 2007
  • Франке Оливер
  • Штанковиак Ахим
RU2439047C2
Способ гидрирования ацетона в изопропиловый спирт 2018
  • Носков Юрий Геннадьевич
  • Корнеева Галина Александровна
  • Марочкин Дмитрий Вячеславович
  • Руш Сергей Николаевич
  • Крон Татьяна Евгеньевна
  • Карчевская Ольга Георгиевна
  • Болотов Павел Михайлович
  • Рыжков Федор Владимирович
RU2675362C1
КАТАЛИЗАТОР, СПОСОБ ЕГО ПРИГОТОВЛЕНИЯ И СПОСОБ ПОЛУЧЕНИЯ ДИГИДРОКСИАЛКАНОВ 2005
  • Симакова Ирина Леонидовна
  • Симонов Михаил Николаевич
  • Демешкина Маргарита Петровна
  • Минюкова Татьяна Петровна
  • Хасин Александр Александрович
  • Юрьева Тамара Михайловна
  • Пармон Валентин Николаевич
RU2290994C1

Реферат патента 2018 года Способ получения 1,2-пропиленгликоля из глицерина

Настоящее изобретение относится к способу получения 1,2-пропиленгликоля гидрированием глицерина при повышенных давлении и температуре в присутствии медьсодержащего катализатора в реакторе. При этом процесс проводят при давлении 20-30 атм в трехфазном реакторе при подаче глицерина и водорода в верхнюю часть реактора, при этом глицерин течет по поверхности частиц катализатора при удельном расходе 0,20-0,70 1/ч, расход водорода устанавливают на таком уровне, чтобы степень его конверсии находилась в интервале 50-90%. Предлагаемый способ позволяет получать 1,2-пропиленгликоль с высокой селективностью при минимальной подаче водорода и без использования дополнительного растворителя. 4 з.п. ф-лы, 1 табл., 12 пр.

Формула изобретения RU 2 663 419 C1

1. Способ получения 1,2-пропиленгликоля гидрированием глицерина при повышенных давлении и температуре в присутствии медьсодержащего катализатора в реакторе, отличающийся тем, что процесс проводят при давлении 20-30 атм в трехфазном реакторе при подаче глицерина и водорода в верхнюю часть реактора, при этом глицерин течет по поверхности частиц катализатора при удельном расходе 0,20-0,70 1/ч, расход водорода устанавливают на таком уровне, чтобы степень его конверсии находилась в интервале 50-90%.

2. Способ по п. 1, отличающийся тем, что при необходимости проводят рецикл непрореагировавшей части глицерина.

3. Способ по п. 1, отличающийся тем, что процесс гидрирования проводят при температуре 210-250°С.

4. Способ по п. 1, отличающийся тем, что в качестве медьсодержащего катализатора используют медный или медь-цинковый катализатор.

5. Способ по п. 1, отличающийся тем, что глицерин, используемый в процессе, содержит 10-30 мас.% воды.

Документы, цитированные в отчете о поиске Патент 2018 года RU2663419C1

Приспособление для суммирования отрезков прямых линий 1923
  • Иванцов Г.П.
SU2010A1
СПОСОБ КОНВЕРСИИ ГЛИЦЕРИНА В ПРОПИЛЕНГЛИКОЛЬ 2012
  • Дин Чжунги
  • Чиу Джозеф
  • Цзинь Вэйхуа
RU2548907C1
US 20100179346 A1, 15.07.2010
M.Akiyama et al, Dehydration-hydrogenation of glycerol into 1,2-propanediol at ambient hydrogen pressure
Applied Catalysis A: General, 2009, 371(1-2), 60-66.

RU 2 663 419 C1

Авторы

Меньщиков Вадим Алексеевич

Ачильдиев Евгений Рудольфович

Семенов Иван Павлович

Даты

2018-08-06Публикация

2017-04-06Подача