Предлагаемое техническое решение относятся к медицине, а точнее - к области изготовления эндопротезов, используемых в ортопедии для замены пораженных естественных суставов человека.
Более конкретно заявленное техническое решение может быть использовано для замены пораженного тазобедренного сустава.
Эндопротезирование суставов является одной из наиболее распространенных ортопедических операций, и прогнозируется дальнейший рост потребности в подобных вмешательствах. Популяция пациентов, нуждающихся в эндопротезировании суставов, характеризуется увеличением возраста и количества сопутствующих заболеваний.
Эндопротезирование суставов обеспечивает долгосрочное восстановление качества жизни, связанного со здоровьем, до уровня популяционной нормы у пациентов с тяжелыми дегенеративными изменениями суставов конечностей.
Ввиду прогнозируемого роста ортопедических операций - эндопротезирования, также неуклонно совершенствуются сами протезы, их структура, материалы, которые используются для их изготовления.
К материалам, которые применяют в настоящее время в эндопротезировании тазобедренного сустава человека, относят: металлы и их сплавы, керамику, костный цемент (полиметилметакрилат), полиэтилен.
Минусом металлических материалов является то, что сочетание металлических медицинских изделий в имплантатах осложняет работу эндопротеза из-за гальвано-электрических явлений вследствие различных электрохимических потенциалов, приводящих к металлозу окружающих биологических тканей или к коррозии деталей. Кроме того, металлам свойственно вызывать резорбцию костной ткани, а усталостные явления часто приводят к разрушению эндопротеза.
Широко известно, что для изготовления чашек тазобедренных суставов является полиэтилен ультравысокого молекулярного веса UHMW РЕ ISO 5834/1 (ASTM F603), а для головок - нержавеющая сталь горячей ковки FeCrNiMoMn ISO 5832/1 (ASTM F648), CoCrMo сплав ISO 5832/4 (ASTM F75) и Al2O3 керамика ISO 6474 (ASTM F603).
Среди традиционных материалов комбинация полиэтилен и Al2O3 керамика считается наиболее оптимальной и наиболее широко распространена (см., например, В.А. Фокин. Пары трения для тотальных эндопротезов тазобедренного сустава и проблемы износа. - Margo Anterior №4/2000, стр. 3). Однако износ полиэтилена является одной из основных проблем в тотальном замещении тазобедренного сустава. Кроме того полимерные материалы нередко вызывают злокачественные перерождения окружающих тканей, проявляют хладотекучесть, старение, что приводит к деформации и разрушению эндопротеза.
Например, известны эндопротезы тазобедренного сустава [заявка US 5549697 А (кл. A61F 2/30, 27.08.1996) и патент US 6187049 (кл. A61F 2/32, 13.02.2001)], содержащие шарнирный элемент в виде головки и чашки, выполненные из керамики. Эти эндопротезы сустава обладают низким коэффициентом трения в шарнире и высокой износоустойчивостью. Однако для применения этих эндопротезов существуют серьезные ограничения. Естественная хрупкость керамики не позволяет сделать стенки керамического вкладыша тоньше 5 мм. Общепринятым недостатком этих протезов является слабая устойчивость к ударным нагрузкам. При прыжках, беге пациента, или при хирургических процедурах на головку и чашку эндопротеза воздействуют ударные нагрузки, вызывающие образование микротрещин в керамике, которые вырастают в процессе эксплуатации и вызывают разрушение шарнирного элемента.
Более высокой трещиностойкостью, более низким коэффициентом трения и более высокой износостойкостью обладает изотропный пиролитический углерод. Сравнительные испытания физико-механических свойств материалов для ортопедических имплантатов (силиконовый каучук, полиэтилен, полиметилметакрилат, титан, нержавеющая сталь, сплав Со-Cr, Al2O3 керамика и пиролитический углерод) показали, что свойства пиролитического углерода наиболее близки к кортикальной кости [см., например, Kampner S.L., Weinstein A.M. l-st Int. Conf. Eng. and Clin. Aspekt Endoprosthetic Fixat. - London, 13-15 June 1984, 111-120]. По показателям биосовместимости, токсичности и коррозии углеродные материалы являются одними из лучших для использования в качестве имплантатов.
Однако у эндопротеза из изотропного пиролитического углерода также имеются недостатки: невысокая надежность, так как в изотропном пиролитическом углероде возникают большие внутренние напряжения, что приводит к растрескиванию материала с последующим разрушением конструкции эндопротеза.
Из уровня техники известен еще один материал, применяемый для изготовления эндопротезов, такой как углерод-углеродный композиционный материал, который характеризуются высокой биосовместимостью с тканями человека. Эндопротезы, изготовленные из таких материалов, хорошо приживаются, не давая нежелательных реакций.
В 1982 г. появилась информация о стержнях тазобедренных суставов из углерод-углеродных композитов, разработанных в Германии (см., например, Бушуев Ю.Г., Персин М.И., Соколов В.А. Углерод-углеродные композиционные материалы: Справ. изд. М.: Металлургия, 1994).
В 80-х годах в Перми в Уральском научно-исследовательском институте композиционных материалов Ю.А. Змеевым, Ю.К. Осоргиным, П.Г. Удинцевым были разработаны эндопротезы тазобедренного сустава из композита на основе углеродной ткани.
Из уровня техники известен патент (RU 2116058 С1, 27.07.1998), в котором раскрыт эндопротез бедренной кости, содержащий выполненные из углерод-углеродного композиционного материала головку, шейку и конусообразную ножку.
Недостатком данного эндопротеза является невысокая прочность и надежность фиксации протеза.
Техническим результатом, на достижение которого направленно заявленное техническое решение заключается в изготовлении эндопротеза тазобедренного сустава с прочностью при циклическом нагружении равную и выше максимальной прочности костной ткани человека, обладающего высокой долговечностью, износостойкостью.
Данный технический результат достигается благодаря тому, что чашка эндопротеза тазобедренного сустава выполнена из композиционного материала, содержащего пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70%, и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор, при этом аморфный углерод содержит углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода.
Кроме того, в техническом решении предлагаются дополнения, направленные на его дальнейшее улучшение. Так, например, для увеличения прочности эндопротеза и надежности его фиксации в кости, предлагается установить усиливающий каркас для формирования единого костно-углеродного блока в зоне замещаемого дефекта.
Для обеспечения эффективной установки усиливающего каркаса в качестве материала, из которого он изготовлен, предлагается использовать титан.
Предлагаемое техническое решение реализуются следующим образом.
Эндопротез тазобедренного сустава представляет собой эндопротез стандартной конструкции. При этом размер и геометрическая форма составных частей эндопротеза может варьироваться в зависимости от различных факторов: возраст, телосложение и образ жизни пациента и т.д.
Стандартная конструкция тазобедренного сустава состоит из трех отдельных сборных деталей - чашка, ножка и головка, которые компонуются во время операции.
Внутри чашки, которая представляет собой корпус, например, с внутренней сферической поверхностью, закреплен вкладыш. Вкладыш может быть изготовлен из керамики, пластика (полиэтилена) или металла.
Чашка тазобедренного сустава изготавливается из композиционного материала состава указанного выше.
Указанный технический результат в части прочности при циклическом нагружении достигается за счет того, что в состав композиционного материала, из которого выполнена чашка, входит аморфный углерод с углеродными нанотрубками в количестве 0,05…1,0% от массы аморфного углерода.
Применение такой конструкции чашки для эндопротеза тазобедренного сустава с упругими характеристиками, близкими к характеристикам кости гарантирует создание ситуации, при которой во время ходьбы имплантат деформируется вместе с костью, что приводит к снижению концентрации остаточных напряжений, разрушения ножки и расшатывания ее в местах плотного контакта с костью.
Эндопротез тазобедренного сустава работает следующим образом.
С помощью обычных хирургических процедур эндопротез тазобедренного сустава закрепляется в бедренной и тазовых костях пациента. При движении ноги пациента происходит перемещение головки эндопротеза тазобедренного сустава внутри чашки. При этом взаимодействуют гладкие, например, сферические поверхности - наружная у головки и внутренняя у чашки, выполненные из композиционного материала указанного выше.
Совокупность предложенных новых признаков технического решения - выполнение чашки для эндопротеза сустава из композиционного материала состава указанного выше, - позволяет получить эффективный, обусловленный взаимосвязью признаков, технический результат - создание чашки для замещения костной ткани с модулем упругости, оптимально соответствующим модулю упругости костной ткани человека и имеющего прочность при циклическом нагружении не менее или даже выше, чем у костной ткани человека.
название | год | авторы | номер документа |
---|---|---|---|
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТНОЙ ТКАНИ И ЭНДОПРОТЕЗЫ СУСТАВОВ, ИЗГОТОВЛЕННЫЕ ИЗ НЕГО | 2017 |
|
RU2684409C2 |
КОМПОЗИЦИОННЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТНОЙ ТКАНИ | 2016 |
|
RU2622751C1 |
ЭНДОПРОТЕЗ СУСТАВА ИЗ ИЗОТРОПНОГО ПИРОЛИТИЧЕСКОГО УГЛЕРОДА | 2005 |
|
RU2295320C2 |
ЭНДОПРОТЕЗ СУСТАВА ИЗ ИЗОТРОПНОГО ПИРОЛИТИЧЕСКОГО УГЛЕРОДА | 2003 |
|
RU2240081C1 |
Скаффолд для замещения костных дефектов | 2020 |
|
RU2768571C1 |
Полимерный вкладыш ацетабулярного компонента эндопротеза с биоактивным пористым слоем для остеосинтеза | 2019 |
|
RU2725063C1 |
ИМПЛАНТАТ МЕЖПОЗВОНКОВЫЙ НЕПОДВИЖНЫЙ ИЗ ИЗОТРОПНОГО ПИРОЛИТИЧЕСКОГО УГЛЕРОДА | 2007 |
|
RU2382619C2 |
Вкладыш ацетабулярного компонента эндопротеза тазобедренного сустава, выполненный из полимерного нанокомпозиционного материала | 2016 |
|
RU2631889C1 |
Полимерный нанокомпозиционный материал триботехнического назначения с ориентированной структурой | 2015 |
|
RU2625454C2 |
Способ пластики костных дефектов при эндопротезировании тазобедренного и коленного суставов | 2015 |
|
RU2622608C1 |
Изобретение относится к медицине, ортопедии. Чашка эндопротеза тазобедренного сустава выполнена из композиционного материала. Материал содержит пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80%. Материал-наполнитель состоит из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70% и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор матрицы. В аморфный углерод внедрены углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода. Изобретение позволяет повысить прочность эндопротеза до значений равных и выше максимальной прочности костной ткани человека. 2 з. п. ф-лы.
1. Чашка эндопротеза тазобедренного сустава выполненная из композиционного материала, содержащего пористую матрицу из волокон кристаллического углерода с межслоевым расстоянием 3,58…3,62 ангстрема, при общем количестве волокна 20…80% и материал-наполнитель, состоящий из кристаллического углерода с межслоевым расстоянием 3,42…3,44 ангстрема в количестве 50…70%, и аморфного углерода в виде кокса в количестве 10…20% от общего объема пор, при этом аморфный углерод содержит углеродные нанотрубки в количестве 0,05…1,0% от массы аморфного углерода.
2. Чашка эндопротеза тазобедренного сустава по п. 1, отличающаяся тем, что дополнительно содержит усиливающий каркас для формирования единого костно-углеродного блока в зоне замещаемого дефекта.
3. Чашка эндопротеза тазобедренного сустава по п. 2, отличающаяся тем, что каркас выполнен из титана.
ЭНДОПРОТЕЗ БЕДРЕННОЙ КОСТИ | 1997 |
|
RU2116058C1 |
ПРОТЕЗ ТЕЛА ПОЗВОНКА | 2000 |
|
RU2204361C2 |
КОМПОЗИЦИОННЫЙ ПОРИСТЫЙ МАТЕРИАЛ ДЛЯ ЗАМЕЩЕНИЯ КОСТЕЙ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ | 2000 |
|
RU2181600C2 |
US 20120226345 A1, 06.09.2012. |
Авторы
Даты
2018-09-26—Публикация
2017-03-09—Подача