Способ изготовления силовой оболочки полимерно-композитного газового баллона высокого давления Российский патент 2018 года по МПК F17C1/06 

Описание патента на изобретение RU2670289C2

Изобретение относится к способам изготовления силовой оболочки полимерно-композитного газового баллона высокого давления (далее - баллон тип КПГ-4), предназначенного для хранения на транспортном средстве природного газа как топлива. Из уровня техники известны различные способы изготовления силовых оболочек полимерно-композитных газовых баллонов (RU 2175088, RU 2234021, US 08727174, ЕР 2581638, US 20160084437, ЕР 2418412).

Наиболее близким аналогом заявляемого способа является способ изготовления силовой оболочки полимерно-композитного газового баллона высокого давления тип КПГ-4, предназначенного для хранения на транспортном средстве природного газа как топлива, включающий намотку на внутреннюю газонепроницаемую оболочку баллона армирующего волокна в виде ленты, спиральными витками (ЕР 2418412). Недостатком наиболее близкого аналога является низкая весовая эффективность за счет отсутствия гибридной структуры силовой оболочки.

Задачей заявляемого способа является создание силовой оболочки баллона тип КПГ-4, изготовленной по схеме армирования для комбинированной композиционной оболочки в определенном соотношении углеродного и стеклянного армирующего волокна, т.е. имеющей гибридную структуру и обеспечивающей оптимальные технические характеристики баллона тип КПГ-4 и необходимую прочность. Задача решается тем, что способ изготовления силовой оболочки баллона тип КПГ-4, включает намотку на внутреннюю газонепроницаемую оболочку баллона тип КПГ-4 армирующего углеволокна в виде ленты, предварительно пропитанной эпоксидным связующим, по следующей схеме армирования:

- кольцевой виток под углом намотки 87,81° к горизонтальной оси баллона,

- спиральный виток под углом намотки 14,2° к горизонтальной оси баллона,

- спиральный виток под углом намотки 14,1° к горизонтальной оси баллона,

- кольцевой виток под углом намотки 87,72° к горизонтальной оси баллона,

- спиральный виток под углом намотки 20,0° к горизонтальной оси баллона,

- кольцевой виток под углом намотки 87,76° к горизонтальной оси баллона,

- спиральный виток под углом намотки 14,4° к горизонтальной оси баллона,

- кольцевой виток под углом намотки 87,79° к горизонтальной оси баллона.

После чего осуществляют формирование защитного слоя, являющегося неотъемлемой частью силовой оболочки, выполненного путем намотки сформированной из стеклоровинга ленты, предварительно пропитанной упомянутым эпоксидным связующим, по следующей схеме армирования:

- спиральный виток под углом намотки 13,6° к горизонтальной оси баллона,

- спиральный виток под углом намотки 30,0° к горизонтальной оси баллона,

- спиральный виток под углом намотки 40,0° к горизонтальной оси баллона,

- спиральный виток под углом намотки 65,0° к горизонтальной оси баллона,

- спиральный виток под углом намотки 70,0° к горизонтальной оси баллона,

- кольцевой виток под углом намотки 88,1° к горизонтальной оси баллона,

и последующую термообработку комбинированной композиционной силовой оболочки баллона тип КПГ-4.

Вышеуказанной совокупностью достигается технический результат, заключающийся в создании конструкции нового полимерно-композитного газового баллона высокого давления, имеющего гибридную структуру композиционной силовой оболочки, обеспечивающей оптимальные технические характеристики, в частности высокую весовую эффективностью (0,42 кг/л.).

В частном случае выполнения заявляемого изобретения в качестве армирующего углеволокна могут использовать углеволокно марки 37-800WD 30K или Tansome Н2550 24K, или Torayca Т 700SC 24 K, или Aksa А-49 24К.

В частном случае выполнения заявляемого изобретения баллон тип КПГ-4 может иметь следующие габаритные размеры: длина баллона равна 1360 мм, наружный диаметр баллона равен 327 мм, объем баллона 80 л, рабочее давление 250 бар. В частном случае выполнения заявляемого изобретения упомянутое эпоксидное связующее для пропитки каждой из упомянутых лент может содержать эпоксидную смолу марки ARALDITE LY 564 SP, ангидридный отвердитель марки ARADUR 917, аминовый ускоритель отверждения марки ACCELERATOR 960 при следующем соотношении компонентов, мас. доля, %:

- эпоксидная смола марки ARALDITE LY 564 SP - 49,8

- ангидридный отвердитель марки ARADUR 917 - 48,8

- аминовый ускоритель отверждения марки ACCELERATOR 960 - 1,4.

В частном случае выполнения заявляемого изобретения каждую из упомянутых лент для намотки могут выполнять из 4 жгутов, намотку армирующего угле- стекловолокна в виде ленты осуществляют с натяжением 17±3 Н/жгут, массовая доля связующего 31-33 %, волокна 67-69 %, при этом предварительную пропитку армирующего угле- стекловолокна в виде ленты упомянутым связующим осуществляют в ванне с температурой связующего 40°С, а отверждение оболочки при последующей термической обработке оболочки осуществляют в течение ≥45 минут при температуре 65 +5°С, затем повышают температуру до 95 + 5°С на ≥4 часов.

Пример осуществления заявленного способа.

Технологическая схема производства баллона тип КПГ-4 состоит из следующих процессов:

- Выдув (производство полиэтиленового лейнера);

- Подготовка лейнера для намотки силовой оболочки: интеграции шифтов в лейнер, образования пластиковой резьбы для вентилей, вкручивание вентилей в лейнер, обработка пламенем, предварительный наддув и тест на герметичность лейнеров.

- Намотка в два этапа для создания комбинированной композиционной силовой оболочки баллона:

1 этап - намотка на внутреннюю газонепроницаемую оболочку баллона армирующего углеволокна в виде ленты, предварительно пропитанной эпоксидным связующим по следующей схеме армирования: кольцевой виток под углом намотки 87,81° к горизонтальной оси баллона, спиральный виток под углом намотки 14,2° к горизонтальной оси баллона, спиральный виток под углом намотки 14,1° к горизонтальной оси баллона, кольцевой виток под углом намотки 87,72° к горизонтальной оси баллона, спиральный виток под углом намотки 20,0° к горизонтальной оси баллона, кольцевой виток под углом намотки 87,76° к горизонтальной оси баллона, спиральный виток под углом намотки 14,4° к горизонтальной оси баллона, кольцевой виток под углом намотки 87,79° к горизонтальной оси баллона;

2 этап - формирование защитного слоя силовой оболочки, являющегося неотъемлемой частью силовой оболочки, выполненного путем намотки сформированной из стеклоровинга ленты, предварительно пропитанной упомянутым эпоксидным связующим по следующей схеме армирования: спиральный виток под углом намотки 13,6° к горизонтальной оси баллона, спиральный виток под углом намотки 30,0° к горизонтальной оси баллона, спиральный виток под углом намотки 40,0° к горизонтальной оси баллона, спиральный виток под углом намотки 65,0° к горизонтальной оси баллона,

спиральный виток под углом намотки 70,0° к горизонтальной оси баллона;

- Термообработка: ≥45 минут при температуре 65 ±5°С, затем повышение температуры до 95 ± 5°С на ≥4 часов;

- Обработки баллонов после отверждения (взвешивание, испытание на герметичность, приклеивание этикеток).

- Гидравлическое испытание баллонов тип КПГ-4 давлением 30,0 МПа.

- Упаковка готовых баллонов тип КПГ-4.

В таблице 1 представлены характеристики баллона тип КПГ-4, полученного заявляемым способом.

При намотке на первом этапе использовали углеродное волокно марки 37-800WD 30K ТУ CF-036, вер. 3 (производитель - компания Grafil Inc.), допустимый аналог - углеволокно марки Tansome Н2550 24K или Torayca Т 700SC 24 K, или Aksa А-49 24К.

Качественные характеристики углеродного волокна представлены в таблице 2.

При намотке на втором этапе использовали стеклоровинг SE 2400 tex Owens Corning, Advantex®.

В качестве эпоксидного связующего для пропитки ленты использовали эпоксидную смолу марки ARALDITE LY 564 SP, ангидридный отвердитель марки ARADUR 917, аминовый ускоритель отверждения марки ACCELERATOR 960 при следующем соотношении компонентов, мас. доля, %: эпоксидная смола марки ARALDITE LY 564 SP - 49,8, ангидридный отвердитель марки ARADUR 917 - 48,8, аминовый ускоритель отверждения марки ACCELERATOR 960 - 1,4.

Качественные характеристики эпоксидного связующего:

жизнеспособность при 40°С: 6-8 ч, вязкость при 25°С: прибл. 500 МПа*сек, температура отверждения: максимум 100°С, температура стеклования (TG) +/-100°С, прочность на сдвиг: минимум 13.8 МПа (в отвержденном виде).

Таким образом, заявляемым способом получена силовая оболочки полимерно-композитного газового баллона высокого давления, предназначенного для хранения на транспортном средстве природного газа как топлива, имеющая гибридную структуру и обеспечивающей оптимальные характеристики баллона тип КПГ-4, в частности высокую весовую эффективностью (0,42 кг/л.)

Похожие патенты RU2670289C2

название год авторы номер документа
БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ 2008
  • Лукьянец Сергей Владимирович
  • Мороз Николай Григорьевич
RU2393376C2
СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНА ДАВЛЕНИЯ 2000
  • Олейник Б.Д.
  • Петренко В.И.
  • Гергерт А.В.
RU2180948C1
Огневзрывобезопасный металлокомпозитный баллон давления 2019
  • Мороз Николай Григорьевич
  • Калинников Александр Николаевич
RU2703849C1
БАЛЛОН ВЫСОКОГО ДАВЛЕНИЯ ИЗ КОМПОЗИЦИОННЫХ МАТЕРИАЛОВ 2011
  • Лукьянец Сергей Владимирович
  • Мороз Николай Григорьевич
  • Лебедев Игорь Константинович
RU2482380C2
БАЛЛОН ДЛЯ ТРАНСПОРТИРОВКИ ВОДОРОДА ИЛИ ИНЫХ СЖИЖЕННЫХ ГАЗОВ ПОД ВЫСОКИМ ДАВЛЕНИЕМ 2022
  • Борисовский Станислав Сергеевич
RU2821112C2
МЕТАЛЛО-КОМПОЗИТНЫЙ БАЛЛОН ДАВЛЕНИЯ 2010
  • Лукьянец Сергей Владимирович
  • Мороз Николай Григорьевич
  • Лебедев Игорь Константинович
RU2439425C2
Металлокомпозитный баллон высокого давления с горловинами большого диаметра 2020
  • Мороз Николай Григорьевич
  • Лебедев Игорь Константинович
RU2754572C1
СПОСОБ ИЗГОТОВЛЕНИЯ ЗАЩИТНОЙ ОБОЛОЧКИ БАЛЛОНА ВЫСОКОГО ДАВЛЕНИЯ 2019
  • Пиценко Михаил Иванович
  • Милохин Алексей Владимирович
  • Шишкин Алексей Анатольевич
  • Филимонова Татьяна Валерьевна
RU2732157C1
СОСУД ДАВЛЕНИЯ И СПОСОБ ЕГО ИЗГОТОВЛЕНИЯ (ВАРИАНТЫ) 2000
  • Кашин С.М.
  • Баженов В.Л.
  • Девятков В.А.
  • Коробов Г.Н.
  • Некрасов В.П.
  • Синельников В.Я.
  • Иванов А.А.
RU2175088C1
СПОСОБ ИЗГОТОВЛЕНИЯ БАЛЛОНА ВЫСОКОГО ДАВЛЕНИЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2009
  • Клюнин Олег Станиславович
RU2426024C2

Реферат патента 2018 года Способ изготовления силовой оболочки полимерно-композитного газового баллона высокого давления

Изобретение относится к способам изготовления силовой оболочки полимерно-композитного газового баллона высокого давления. Способ включает намотку на внутреннюю газонепроницаемую оболочку армирующего углеволокна в виде ленты, пропитанной эпоксидным связующим, по следующей схеме армирования: кольцевой виток под углом намотки 87,81°, спиральный виток под углом намотки 14,2°, спиральный виток под углом намотки 14,1°, кольцевой виток под углом намотки 87,72°, спиральный виток под углом намотки 20,0°, кольцевой виток под углом намотки 87,76°, спиральный виток под углом намотки 14,4°, кольцевой виток под углом намотки 87,79°. Далее формируют защитный слой силовой оболочки, выполненный путем намотки сформированной из стеклоровинга ленты, пропитанной эпоксидным связующим, по следующей схеме армирования: спиральный виток под углом намотки 13,6°, спиральный виток под углом намотки 30,0°, спиральный виток под углом намотки 40,0°, спиральный виток под углом намотки 65,0°, спиральный виток под углом намотки 70,0°, кольцевой виток под углом намотки 88,1°. Углы намотки определяются по отношению к горизонтальной оси баллона. Затем осуществляют термообработку силовой оболочки. Технический результат заключается в повышении весовой эффективности. 4 з.п. ф-лы, 2 табл.

Формула изобретения RU 2 670 289 C2

1. Способ изготовления силовой оболочки баллона типа КПГ-4, включающий намотку на внутреннюю газонепроницаемую оболочку баллона армирующего углеволокна в виде ленты, предварительно пропитанной эпоксидным связующим, по следующей схеме армирования:

- кольцевой виток под углом намотки 87,81° к горизонтальной оси баллона,

- спиральный виток под углом намотки 14,2° к горизонтальной оси баллона,

- спиральный виток под углом намотки 14,1° к горизонтальной оси баллона,

- кольцевой виток под углом намотки 87,72° к горизонтальной оси баллона,

- спиральный виток под углом намотки 20,0° к горизонтальной оси баллона,

- кольцевой виток под углом намотки 87,76° к горизонтальной оси баллона,

- спиральный виток под углом намотки 14,4° к горизонтальной оси баллона,

- кольцевой виток под углом намотки 87,79° к горизонтальной оси баллона,

с последующим формированием защитного слоя силовой оболочки, являющегося неотъемлемой частью силовой оболочки, выполненного путем намотки сформированной из стеклоровинга ленты, предварительно пропитанной упомянутым эпоксидным связующим, по следующей схеме армирования:

- спиральный виток под углом намотки 13,6° к горизонтальной оси баллона,

- спиральный виток под углом намотки 30,0° к горизонтальной оси баллона,

- спиральный виток под углом намотки 40,0° к горизонтальной оси баллона,

- спиральный виток под углом намотки 65,0° к горизонтальной оси баллона,

- спиральный виток под углом намотки 70,0° к горизонтальной оси баллона,

- кольцевой виток под углом намотки 88,1° к горизонтальной оси баллона,

и последующую термообработку силовой углестеклопластиковой оболочки.

2. Способ по п. 1, отличающийся тем, что в качестве армирующего углеволокна используют углеволокно марки 37-800WD 30K, или Tansome Н2550 24K, или Torayca Т 700SC 24 K, или Aksa А-49 24К.

3. Способ по п. 1, отличающийся тем, что баллон типа КПГ-4 имеет следующие габаритные размеры: длина баллона равна 1360 мм, наружный диаметр баллона равен 327 мм, объем баллона 80 л, рабочее давление 250 бар.

4. Способ по п. 1, отличающийся тем, что упомянутое эпоксидное связующее для пропитки каждой из упомянутых лент содержит эпоксидную смолу марки ARALDITE LY 564 SP, ангидридный отвердитель марки ARADUR 917, аминовый ускоритель отверждения марки ACCELERATOR 960 при следующем соотношении компонентов, мас. доля, %:

эпоксидная смола марки ARALDITE LY 564 SP 49,8 ангидридный отвердитель марки ARADUR 917 48,8 аминовый ускоритель отверждения марки ACCELERATOR 960 1,4

5. Способ по п. 1, отличающийся тем, что каждую из упомянутых лент для намотки выполняют из 4 жгутов, намотку армирующего углестекловолокна в виде ленты осуществляют с натяжением 17±3 Н/жгут, массовая доля связующего 31-33%, волокна 67-69%, при этом предварительную пропитку армирующего углестекловолокна в виде ленты упомянутым связующим осуществляют в ванне с температурой связующего 40°C, а отверждение оболочки при последующей термической обработке оболочки осуществляют в течение ≥45 мин при температуре 65±5°C, затем повышают температуру до 95±5°C на ≥4 ч.

Документы, цитированные в отчете о поиске Патент 2018 года RU2670289C2

УСТОЙЧИВЫЕ К ПЛЕСЕНИ СТРОИТЕЛЬНЫЕ МАТЕРИАЛЫ 2005
  • Вайде Мирко
  • Болте Андреас
  • Фрай Штефан
  • Герке Томас
  • Шунк Ахим
RU2418412C9
АРМИРОВАННАЯ ОБОЛОЧКА ДЛЯ ВЫСОКОГО ДАВЛЕНИЯ ИЗ СЛОИСТОГО КОМПОЗИЦИОННОГО МАТЕРИАЛА (ВАРИАНТЫ) 2001
  • Барынин В.А.
  • Майоров Б.Г.
  • Алеев В.А.
  • Романов А.Ф.
  • Миткевич А.Б.
  • Никитюк В.А.
  • Федоров В.В.
RU2190150C1
БЕЗМЕН 1928
  • Трофимовский Д.Ф.
SU8774A1
US 6190481 B1, 20.02.2001
JP 0010220691 A, 21.08.1998.

RU 2 670 289 C2

Авторы

Фаткуллин Талгат Гилмуллович

Гуськов Алексей Владимирович

Шевцова Ирина Владимировна

Монахова Елена Геннадьевна

Даты

2018-10-22Публикация

2017-03-30Подача