Изобретение относится к области исследования физико-химических и эксплуатационных свойств бетона в условиях воздействия на образец жидких агрессивных растворов.
Известен способ определения стойкости бетона к воздействию водных растворов солей, который создает циклический поток агрессивного раствора при переменно следуемых положительных и отрицательных напорах и давлении, равном предельно выдерживаемому бетону, соответствующему его марке по водонепроницаемости, а о стойкости бетона судят по количеству циклов, приводящих к появлению воды на поверхности испытуемого образца [А.с. 996941, от 07.05.1981, M. Кл.3 G01n 33/38, Бюллетень №6, опубл. от 15.02.1983].
Недостатком данного изобретения является то, что за короткий промежуток времени происходит разрушение бетонного конгломерата, не только за счет коррозии, но и за счет напора и давления жидкости, что не соответствует безнапорным (самотечным) железобетонным трубопроводам.
Известен также метод определения коррозионной стойкости бетона в растворах кислот (п. 5, ГОСТ Р 52804-2007 «Защита бетонных и железобетонных конструкций от коррозии. Методы испытаний»), который основан на измерении скорости изменения химического состава раствора кислоты и цементного камня в бетоне, погруженном в раствор кислоты заданной концентрации при диффузионном переносе агрессивного вещества в бетоне.
Недостатком известного метода является то, что в нем регламентируется проводить испытания материалов в условиях, исключающих постоянный поток жидкой агрессивной среды, омывающей испытуемые образцы. Кроме того, конструкции сооружений водоотведения и водоочистки постоянно подвергаются воздействию жидких агрессивных сред, постоянно перемещающихся относительно конструкций, т.е. омывающих бетон. Наряду с этим, непрерывный поток жидкости, проходящий вдоль конструкций (или испытуемого образца), может значительно ускорять коррозию, тем самым приводя к преждевременному износу конструкций.
Наиболее близким к заявленному изобретению является способ определения коррозионной стойкости бетона в агрессивных жидких средах, включающий воздействие потоком агрессивного раствора на поверхность испытуемого образца, при этом с целью прогнозирования срока службы строительных конструкций, определяют отношение разности концентраций агрессивного вещества жидкой среды, поступающей и вытекающей из сосуда, с образцом к количеству агрессивного вещества, необходимого для повреждения одной весовой единицы бетона [А.с. 280968, от 07.09.1968, МПК G01n 17/00, Бюллетень №28, опубл. от 03.09.1970].
Недостатком способа является то, что с позиции механики жидкости, а именно гидродинамики, затруднено математическое описание режима и характера течения жидкости, омывающей испытуемый образец, вследствие несовершенства геометрических параметров реакционного сосуда (емкости), в котором происходит контакт движущейся агрессивной жидкости с испытуемым образцом. Кроме того, не обеспечены постоянство концентрации агрессивного раствора у поверхности образца, возможность изменения скорости движения потока, сохранение во времени площади поверхности образца, контактирующей с агрессивным раствором.
Задачей изобретения является устранение вышеуказанных недостатков и создание способа определения коррозионной стойкости бетона, позволяющего проводить ускоренные испытания в условиях, характерных для конструкций, вдоль поверхности которых, происходит безнапорное или самотечное движение агрессивной жидкости.
Поставленная задача достигается тем, что в способе определения коррозионной стойкости бетона, включающем воздействие потоком агрессивного раствора на поверхность испытуемых образцов и наблюдение за изменением во времени характеристики, чувствительной к деструкции бетона, согласно изобретению движение потока жидкости в установке самотеком происходит по горизонтальной поверхности четырех идентичных образцов, позволяющих определить глубину коррозионного поражения бетона в четыре срока наблюдения, при котором ламинарный поток обеспечивает постоянство концентрации агрессивного раствора у поверхности испытуемых образцов. Кроме того, для сохранения во времени площади поверхности образцов, контактирующей с агрессивным раствором, воздействие производят только на одну верхнюю грань образцов, а о стойкости бетона судят по отношению разности концентраций агрессивного вещества жидкой среды, поступающего и вытекающего из реакционного сосуда с образцами, к количеству агрессивного вещества, необходимого для повреждения одной единицы площади поверхности бетона.
Сущность способа поясняется на фигуре, где приведена принципиальная схема установки для испытания бетона.
Установка состоит из рабочей емкости 1; вкладыша-формы 2 для исследуемых образцов; расходной емкости с агрессивным раствором 3, емкости для слива отработанного раствора 4; запорноговентиля 5; системы гибких трубок 6; крана 7; четырех испытуемых одинаковых бетонных образцов-кубов 8,стандартного размера 5×5×5 см; пористой мембраны 9; хлоркальциевых трубок с натронной известью 10.
В расходной емкости 3 содержится запас агрессивного раствора. Для возможности подачи требуемого объема агрессивного раствора необходим запорный вентиль 5 и система гибких трубок 6. Рабочая емкость 1 выполняет в установке функцию «реактора», в нее помещается вкладыш-форма 2 с четырьмя одинаковыми бетонными образцами 8, которые необходимо подвергнуть процессу коррозии. Для сохранения во времени площади контактируемой поверхности бетонных образцов с агрессивным раствором, протекающий ламинарный поток агрессивного раствора воздействует только на одну верхнюю их грань. Пористая мембрана 9 обеспечивает ламинарность потока агрессивной жидкости в рабочей емкости. Для выпуска воздуха из реакционной емкости установлен кран 7. В емкость 4 стекает отработанный раствор. В случае необходимости следует предусмотреть изоляцию емкостей от СO2 воздуха посредством хлоркальциевых трубок 10 с натронной известью. Последовательно удаляя бетонные образцы из рабочей емкости в процессе эксперимента, мы сможем определить глубину коррозионного поражения в четыре срока наблюдения, тем самым повысив точность прогнозирования срока службы строительных конструкций. Для прогнозирования срока службы строительных конструкций определяют отношение разности концентраций агрессивного вещества жидкой среды, поступающей и вытекающей из реакционного сосуда с образцами, к количеству агрессивного вещества, необходимого для повреждения одной единицы площади поверхности бетона. Полученный результат - объем поврежденного бетона - пересчитывают с учетом площади реакционной поверхности образцов на глубину поражения.
Предложенный способ позволяет прогнозировать глубину поражения бетона на любой срок эксплуатации конструкций, при этом обеспечены постоянство концентрации агрессивного раствора у поверхности образцов, возможность изменения скорости движения потока, сохранение во времени площадей поверхности образцов, контактирующих с агрессивным раствором.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ОПРЕДЕЛЕНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ БЕТОНА | 1970 |
|
SU280968A1 |
Способ коррозионных испытаний и высокоскоростная циркуляционная установка для его осуществления | 2021 |
|
RU2772612C1 |
СПОСОБ КОРРОЗИОННЫХ ИСПЫТАНИЙ СТАЛЕЙ | 2003 |
|
RU2235309C1 |
Способ определения стойкости бетона к воздействию водных растворов солей | 1981 |
|
SU996941A1 |
Способ коррозионных испытаний и установка для его осуществления | 2021 |
|
RU2772614C1 |
ПРИМЕНЕНИЕ N,N-ДИМЕТИЛ-ПАРА-АНИЗИДИНА В КАЧЕСТВЕ ИНГИБИТОРА СУЛЬФОВОДОРОДНОЙ КОРРОЗИИ И ВОДОРОДНОГО ОХРУПЧИВАНИЯ | 2018 |
|
RU2667265C1 |
СПОСОБ ЗАЩИТЫ ОТ РАЗРУШЕНИЯ ГАЗОВОЙ КОРРОЗИЕЙ САМОТЕЧНЫХ БЕТОННЫХ ТРУБ | 1997 |
|
RU2123151C1 |
ПРИМЕНЕНИЕ N-МЕТИЛ-ПАРА-АНИЗИДИНА В КАЧЕСТВЕ ИНГИБИТОРА СУЛЬФОВОДОРОДНОЙ КОРРОЗИИ И ВОДОРОДНОГО ОХРУПЧИВАНИЯ | 2018 |
|
RU2667928C1 |
Способ проведения испытаний на коррозийную стойкость | 2021 |
|
RU2778453C1 |
СПОСОБ ОЦЕНКИ СТОЙКОСТИ ТРУБОПРОВОДНЫХ СТАЛЕЙ К "КАНАВОЧНОЙ" КОРРОЗИИ | 2021 |
|
RU2757634C1 |
Изобретение относится к области исследования физико-химических и эксплуатационных свойств бетона в условиях воздействия на образец жидких агрессивных растворов. Способ заключается в том, что движение потока жидкости в установке самотеком происходит по горизонтальной поверхности четырех идентичных образцов, позволяющих определить глубину коррозионного поражения бетона в четыре срока наблюдения, при котором ламинарный поток обеспечивает постоянство концентрации агрессивного раствора у поверхности испытуемых образцов, кроме того, для сохранения во времени площади поверхности образцов, контактирующей с агрессивным раствором, агрессивный раствор воздействует только на одну верхнюю грань образцов, а о стойкости бетона судят по отношению разности концентраций агрессивного вещества жидкой среды, поступающего и вытекающего из реакционного сосуда с образцами, к количеству агрессивного вещества, необходимого для повреждения одной единицы площади поверхности бетона. Достигается возможность проведения ускоренных испытаний в условиях, характерных для конструкций, вдоль поверхности которых происходит безнапорное или самотечное движение агрессивной жидкости. 1 ил.
Способ определения коррозионной стойкости бетона, включающий воздействие потоком агрессивного раствора на поверхность испытуемых образцов и наблюдение за изменением во времени характеристики, чувствительной к деструкции бетона, отличающийся тем, что движение потока жидкости в установке самотеком происходит по горизонтальной поверхности четырех идентичных образцов, позволяющих определить глубину коррозионного поражения бетона в четыре срока наблюдения, при котором ламинарный поток обеспечивает постоянство концентрации агрессивного раствора у поверхности испытуемых образцов, кроме того, для сохранения во времени площади поверхности образцов, контактирующей с агрессивным раствором, агрессивный раствор воздействует только на одну верхнюю грань образцов, а о стойкости бетона судят по отношению разности концентраций агрессивного вещества жидкой среды, поступающего и вытекающего из реакционного сосуда с образцами, к количеству агрессивного вещества, необходимого для повреждения одной единицы площади поверхности бетона.
СПОСОБ ОПРЕДЕЛЕНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ БЕТОНА | 0 |
|
SU280968A1 |
Способ определения стойкости бетона к воздействию водных растворов солей | 1981 |
|
SU996941A1 |
СПОСОБ ОЦЕНКИ КОРРОЗИОННОЙ СТОЙКОСТИ БЕТОННЫХ ИЗДЕЛИЙ | 2010 |
|
RU2442134C1 |
Способ определения коррозионной стойкости крупнопористого бетона | 1990 |
|
SU1781592A1 |
CN 105004652 A, 28.10.2015 | |||
CN 104990859 A, 21.10.2015. |
Авторы
Даты
2018-10-31—Публикация
2017-11-28—Подача