УСТАНОВКА СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА (СПГ) В УСЛОВИЯХ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ (ГРС) Российский патент 2018 года по МПК F25J1/00 

Описание патента на изобретение RU2673642C1

Изобретение относится к газовой промышленности, конкретно к технологиям сжижения природного газа (СПГ).

Известно устройство для сжижения природного газа (патент РФ №2500959, опубл. 10.12.2013), содержащее адсорбер, фильтр, теплообменник, вихревую трубу с охлаждаемым горячим концом трубы. Помимо это устройство отличается тем, что вихревая труба размещена в трехсекционной емкости-сепараторе вертикально, причем в нижней секции размещен холодный конец трубы, в средней секции размещен горячий конец трубы, имеющий сепарационное устройство в виде соосно установленного внутреннего конуса в конической части горячего конца, для выхода регулируемого расхода газа, в средней секции имеется патрубок тангенциального ввода холодного потока газа после рекуперации холода в теплообменнике исходного потока сжиженного газа, а в верхней секции патрубок вывода газообразного продукта.

Недостатком устройства является установка вихревой трубы - сложного в изготовлении устройства, обладающего низкими показателями надежности, а также узким диапазоном рабочих расходов газа. Помимо этого в устройстве не предусмотрено комонентов, позволяющих осуществлять извлечение избыточной энергии магистрального потока газа, что снижает эффективность применения устройства на ГРС.

Известно устройство для сжижения природного газа (патент РФ №2285212, опубл. 10.10.2006), содержащее фильтр очистки нерасширившегося газа от примесей, узел разделения линии его подачи на линии, первая из которых присоединена к разделительной вихревой трубе, линия отвода охлажденного газа которой подсоединена к потребителю редуцированного газа, а вторая линия присоединена через дроссельное устройство к сборнику конденсата. Также устройство включает узел разделения линии подачи нерасширившегося газа, выполненный в виде узла разделения на три линии, при этом третья линия подсоединена к вихревой трубе с дополнительным потоком, линия отвода охлажденного газа которой подсоединена через дроссельное устройство к рекуперативному теплообменному аппарату системы рекуперативных теплообменных аппаратов, а затем к потребителю редуцированного газа, а линия отвода подогретого газа - к потребителю редуцированного газа более высокого давления, при этом линия отвода охлажденного газа из разделительной вихревой трубы подсоединена к системе рекуперативных теплообменных аппаратов и далее к потребителю редуцированного газа, а линия отвода подогретого газа из нее через дроссельное устройство и теплообменный аппарат подключена к приосевой области вихревой трубы с дополнительным потоком, вторая линия подачи нерасширившегося газа соединена с дроссельным устройством через систему рекуперативных теплообменных аппаратов.

Основной недостаток данного устройства заключается в применении вихревой трубы - сложного в изготовлении устройства, обладающего низкими показателями надежности, а также узким диапазоном рабочих расходов газа. Помимо этого в устройстве не применяется турбодетандерное оборудование, что не позволяет обеспечить использование избыточной энергии магистрального потока газа на ГРС.

Известен комплекс для производства сжиженного природного газа (патент РФ №2541360, опубл. 10.02.2015 г.), содержащий соединенную с магистралью газораспределительной станции трубу, с которой связаны технологическая линия, соединенная с газораспределительной сетью, и продукционная линия, соединенная с хранилищем сжиженного природного газа и включающая компрессор, дроссель, сепаратор. В комплекс также входит детандер, оборудованный турбиной, выполненной с возможностью вращения потоком газа из технологической линии, кинематически связанной с компрессором, при этом комплекс дополнительно оборудован струйным компрессором, вход которого соединен с хранилищем сжиженного природного газа, а выход соединен с технологической линией, сопловой аппарат детандера выполнен из теплопроводящего материала. Узел осушки выполнен в виде единого блока для осушки технологического и продукционного потоков.

Недостатком данного комплекса является установка линий внедряемого оборудования параллельно газораспределительной станции, что приводит к снижению производительности детандера, вызванному снижением расхода газа через агрегат по сравнению с подключением параллельно узлу редуцирования ГРС. Также исполнение компрессора и детандера в виде единого агрегата, в котором компрессор выступает потребителем полезной мощности на валу детандера влечет увеличение взаимной зависимость работы детандера и компрессора, что снижает показатели надежности комплекса. Отсутствие устройства для извлечения тяжелых углеводородов до детандера создает необходимость в их конденсации в сопловом узле детандера и последующем отведении, что не обеспечивает полного исключения попадания конденсата на лопатки рабочего колеса турбины, которое приводит к снижению надежности оборудования.

Известна установка сжижения природного газа (патент РФ №2495341, опубл. 10.10.2013 г.), включающая подающую и возвратную магистрали, последовательно расположенные по прямому потоку первый и второй двухпоточные теплообменники, расширительное устройство и сепаратор, и магистраль детандирования, отличающаяся тем, что установка снабжена трехпоточным теплообменником, расположенным между первым и вторым теплообменниками, первым и вторым волновыми детандерами-компрессорами и магистралью компримирования, соединяющей возвратную магистраль на участке сброса в газовую магистраль низкого давления и подающую магистраль после входа в магистраль детандирования и проходящую через компрессорные части второго и первого детандеров-компрессоров, а магистраль детандирования соединяет подающую магистраль на входе и возвратную магистраль между трехпоточным и вторым двухпоточным теплообменниками и проходит последовательно через детандерную часть первого детандера-компрессора, трехпоточный теплообменник и детандерную часть второго детандера-компрессора.

Основной недостаток установки - применение в ней детандер-компрессорных агрегатов, которые отличаются низкими показателями надежности и высокой сложностью изготовления и обслуживания. Помимо этого, установка не предусматривает соединения линий сброса паровой фазы хранилища СПГ и цикла сжижения газа, что исключает возможность сокращения потерь СПГ от испарения.

Известна установка получения сжиженного природного газа с интегрированным детандером и флэш-циклом, «Integrated methane expander and flash cycle» (Roberts M.J. Briton refrigeration cycles for small-scale LNG / Mark J. Roberts, Fei Chen, // Gas Processing. - 2015. - Vol. 4(1). - P. 27-32), включающая основной теплообменник, два конденсатосборника с установленным между ними теплообменником флэш-цикла, метановый замкнутый контур с компрессором и интергированным детандером, а также цикл повторного сжижения паровой фазы.

Основным недостатком данной установки является отсутствие турбодетандерного оборудования, позволяющего использовать избыточную энергию магистрального потока газа. Помимо этого, данная установка не предусматривает линий подключения к газораспределительной станции (ГРС), то делает невозможным его применение в исходном виде. Также следует отметить отсутствие линии сброса паровой фазы хранилища СПГ в цикл повторного сжижения газа.

Техническим результатом является создание высокоэффективноой установки получения сжиженного природного газа за счет прменения тубодетандерной установки для извлечения энергии, полученной при расширении от перепада давлений на входе в газораспределительную станцию и на выходе из нее.

Технический результат достигается тем, что узел очистки газа подключен параллельно основной линии ГРС, ведущей к узлу редуцирования ГРС, после узла подогрева ГРС и узла очистки ГРС, за узлом очистки газа установлен турбодетандерный агрегат, турбодетандерный агрегат и компрессор основного цикла выполнены как отдельные, независимые друг от друга агрегаты, к турбодетандерному агрегату в качестве потребителя мощности подключен электрический генератор, после турбодетандерного агрегата установлен узел разделения потока газа на две части, один из выходов которого соединен со входом теплообменника установки сжижения природного газа с внедренным детандером и флэш-циклом, а другой выход - со входом узла одоризации газа ГРС, линии сброса паровой фазы из резервуарного парка склада СПГ подключены к следующему за флэш-циклом конденсатосборнику.

Установка поясняется следующими фигурами: фиг.1 - технологическая схема установки получения сжиженного природного газа в условиях газораспределительной станции, где:

1 - узел очистки ГРС;

2 - узел подогрева ГРС;

3 - узел очистки газа;

4 - узел редуцирования ГРС;

5 - турбодетандерный агрегат с подключенным электрогенератором;

6 - установка дополнительного подогрева газа;

7 - узел одоризации газа ГРС;

8 - компрессор основного цикла с электродвигателем;

9 - теплообменник типа холодильник основного цикла;

10 - детандер основного цикла с подключенным электрогенератором;

11 - основной теплообменник;

12 - конденсатосборник;

13 - конденсатосборник;

14 - флэш-теплообменник;

15 - компрессор цикла сжижения паровой фазы с электродвигателем;

16 - теплообменник типа холодильник цикла сжижения паровой фазы;

17 - резервуарный парк склада СПГ;

18 - факельная установка;

19 - узел отпуска товарного СПГ;

20 - узел разделения потока газа.

Установка сжижения природного газа в условиях газораспределительной станции содержит узел очистки газа 3 (фиг.1), подключенный параллельно основной линии ГРС, ведущей к узлу редуцирования ГРС 4, после узла подогрева ГРС 2 и узла очистки ГРС 1. За узлом дополнительной очистки и подготовки природного газа 3 устанавливается турбодетандерный агрегат с подключенным турбодетандерным агрегатом с подключенным электрогенератором 5, после которого предусмотрен узел разделения потока газа 20.

Первый выход узла разделения потока газа 20 соединен с установкой дополнительного подогрева газа 6, после которой подключены узел одоризации газа ГРС 7 и выходные линии ГРС.

Второй выход узла разделения потока газа 20 соединен с основным теплообменником 11, на выходе из которого установлен конденсатосборник 12. Основной теплообменник 11 включает основной метановый цикл, состоящий из компрессора основного цикла с электродвигателем 8, теплообменник типа холодильник основного цикла 9, детандер основного цикла с подключенным электрогенератором 10. Помимо основного метанового цикла основной теплообменник содержит цикл сжижения паровой фазы, который включает в себя компрессор цикла сжижения паровой фазы с электродвигателем 15, а также теплообменник типа холодильник цикла сжижения паровой фазы 16.

Линия выхода СПГ из конденсатосборника 12 соединена с флэш-теплообменником 14, который включает выходную линию паровой фазы конденсатосборника 13, который установлен после флэш-теплообменника 14. Выходная линия СПГ конденсатосборника 13 подключена к резервуарному парку склада СПГ 17.

Линия выдачи СПГ резервуарного парка склада СПГ 17 подключена к узлу отпуска товарного СПГ 19. Линия сброса паровой фазы резервуарного парка склада СПГ 17 соединена со входом паровой фазы конденсатосборника 13, а также с факельной установкой 18.

Установка работает следующим образом.

Газ из магистрального газопровода поступает на вход ГРС, после чего направляется в узел очистки ГРС 1, где проходит первоначальную очистку от пыли и капельной влаги, затем, при необходимости, газ подогревают в узле подогрева ГРС 2.

После чего, при включении в работу турбодетандерного агрегата с подключенным электрогенератором 5, газ проходит через узел очистки газа 3, где предусматривается удаление капельной жидкости из потока газа чтобы избежать образования гидратов в криогенной секции. Дальнейшая очистка природного газа от водяных паров и диоксида углерода СО2 проводится в аппаратах-осушителях, заполненных адсорбентом. В качестве адсорбента применяются молекулярные сита. Осушенный и очищенный природный газ после осушителей проходит через фильтры-пылеуловители для удаления пыли адсорбента. Для удаления паров ртути предусмотрен специализированный мембранный адсорбер.

В случае же, когда турбодетандерный агрегат простаивает, используется узел редуцирования ГРС 4.

После расширения в турбодетандерном агрегате с подключенным электрогенератором 5 поток газа разделяется в узле разделения потока газа 20 на технологический и продукционный.

Продукционный поток направляется к узлу одоризации газа 7, проходя через устройство дополнительного подогрева газа 6, предназначенное для повышения температуры газа до необходимой величины, требуемой нормативно-технической документацией, после чего производится учет газа и поток направляется в газораспределительные сети к потребителям.

Технологический поток газа при низкой температуре направляется в основной теплообменник 11, пройдя через который, оказывается в конденсатосборнике 12. Охлаждение технологического потока газа в рамках основного теплообменника достигается за счет основного метанового цикла, в котором задействован компрессор основного цикла с электродвигателем 8, теплообменник типа холодильник основного цикла 9, и детандер основного цикла с подключенным электрогенератором 10. Но также эфективность охлаждения потока в основном теплообменнике повышается за счет теплообмена с паровой фазой из конденсатосборников 12 и конденсатосборников 13, которая подвергается повторному сжижению в рамках цикла сжижения паровой фазы, в котором задействован компрессор цикла сжижения паровой фазы с электродвигателем 15 и теплообменник типа холодильник цикла сжижения паровой фазы 16.

При перетекании СПГ из конденсатосборника 12 в конденсатосборник 13 паровая фаза из конденсатосборника 13 перед попаданием в цикл сжижения паровой фазы подвергается теплообмену с СПГ из конденсатосборника 12 в рамках флэш-теплообменника 14, что позволяет значительно сократить затраты энергии в рамках цикла сжижения паровой фазы.

Из конденсатосборника 13 СПГ самотеком поступает в резервуарный парк склада СПГ 17, который состоит из криогенных резервуаров, оснащенных необходимым набором запорной и предохранительной арматуры. Хранение на складе осуществляется при постоянном давлении и постоянной температуре.

Постоянное давление поддерживается за счет постоянного отвода паровой фазы из резервуаров резервуарного парка склада СПГ 17 в линию отвода паровой фазы, пройдя которую она смешивается с паровой фазой в конденсатосборнике 13. Однако, на случай превышения регламентированного давления в резервуарах предусмотрен сброс паровой фазы в факельную установку 18, которая также используется при продувке технологического оборудования.

Отпуск готовой продукции СПГ в автоцистерны осуществляется при помощи специальных насосов для криогенных газов в рамках узла отпуска товарного СПГ 19.

Похожие патенты RU2673642C1

название год авторы номер документа
СПОСОБ ПОЛУЧЕНИЯ СЖИЖЕННОГО ПРИРОДНОГО ГАЗА В УСЛОВИЯХ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ 2017
  • Рузманов Александр Юрьевич
  • Воронов Владимир Александрович
  • Кириллов Николай Геннадьевич
RU2665088C1
СПОСОБ ПРОИЗВОДСТВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА И КОМПЛЕКС ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Гайдт Давид Давидович
  • Мишин Олег Леонидович
RU2541360C1
Способ сжижения природного газа по циклу частичного сжижения за счет перепада давления и установка для его осуществления 2018
  • Соболев Евгений Игоревич
RU2678236C1
Способ производства сжиженного природного газа 2016
  • Байков Игорь Равильевич
  • Кулагина Ольга Владимировна
RU2636966C1
Система ожижения природного газа на компрессорной станции магистрального газопровода 2019
  • Белоусов Юрий Васильевич
RU2694566C1
Способ производства сжиженного природного газа на газораспределительной станции 2019
  • Белоусов Юрий Васильевич
RU2730757C1
Способ сжижения природного газа на газораспределительной станции и установка для его осуществления 2017
  • Белоусов Юрий Васильевич
RU2656068C1
Автоматическая газораспределительная станция 2022
  • Хабибуллин Искандер Мидхатович
  • Садртинов Руслан Рифович
  • Ведерников Роман Зиновьевич
RU2787613C1
СПОСОБ ПРОИЗВОДСТВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА 2003
  • Ходорков И.Л.
RU2247908C1
Система производства электроэнергии при сжижении природного газа на газораспределительной станции 2020
  • Белоусов Юрий Васильевич
RU2731263C1

Иллюстрации к изобретению RU 2 673 642 C1

Реферат патента 2018 года УСТАНОВКА СЖИЖЕНИЯ ПРИРОДНОГО ГАЗА (СПГ) В УСЛОВИЯХ ГАЗОРАСПРЕДЕЛИТЕЛЬНОЙ СТАНЦИИ (ГРС)

Изобретение относится к газовой промышленности, конкретно к технологиям сжижения природного газа (СПГ). Установка сжижения природного газа в условиях газораспределительной станции (ГРС) включает узел очистки газа, турбодетандерный агрегат, компрессор основного цикла и установку сжижения природного газа с внедренным детандером и флэш-циклом, резервуарный парк склада СПГ, узел отпуска товарного СПГ, факельную установку. Узел очистки газа подключен параллельно основной линии ГРС, ведущей к узлу редуцирования ГРС, после узла подогрева ГРС и узла очистки ГРС. За узлом очистки газа установлен турбодетандерный агрегат. Турбодетандерный агрегат и компрессор основного цикла выполнены как отдельные агрегаты. К турбодетандерному агрегату в качестве потребителя мощности подключен электрический генератор. После турбодетандерного агрегата установлен узел разделения потока газа на две части, один из выходов которого соединен со входом теплообменника установки сжижения природного газа с внедренным детандером и флэш-циклом, а другой выход - со входом узла одоризации газа ГРС. Линии сброса паровой фазы из резервуарного парка склада СПГ подключены к следующему за флэш-циклом конденсатосборнику. Техническим результатом является повышение эффективности установки. 1ил.

Формула изобретения RU 2 673 642 C1

Установка сжижения природного газа (СПГ) в условиях газораспределительной станции (ГРС), включающая узел очистки газа, турбодетандерный агрегат, компрессор основного цикла и установку сжижения природного газа с внедренным детандером и флэш-циклом, резервуарный парк склада СПГ, узел отпуска товарного СПГ, факельную установку, отличающаяся тем, что узел очистки газа подключен параллельно основной линии ГРС, ведущей к узлу редуцирования ГРС, после узла подогрева ГРС и узла очистки ГРС, за узлом очистки газа установлен турбодетандерный агрегат, турбодетандерный агрегат и компрессор основного цикла выполнены как отдельные, независимые друг от друга агрегаты, к турбодетандерному агрегату в качестве потребителя мощности подключен электрический генератор, после турбодетандерного агрегата установлен узел разделения потока газа на две части, один из выходов которого соединен со входом теплообменника установки сжижения природного газа с внедренным детандером и флэш-циклом, а другой выход - со входом узла одоризации газа ГРС, линии сброса паровой фазы из резервуарного парка склада СПГ подключены к следующему за флэш-циклом конденсатосборнику.

Документы, цитированные в отчете о поиске Патент 2018 года RU2673642C1

СПОСОБ ПРОИЗВОДСТВА СЖИЖЕННОГО ПРИРОДНОГО ГАЗА И КОМПЛЕКС ДЛЯ ЕГО РЕАЛИЗАЦИИ 2014
  • Гайдт Давид Давидович
  • Мишин Олег Леонидович
RU2541360C1
Устройство для гидравлических испытаний секций отопительных радиаторов 1960
  • Нестеренко В.Б.
  • Нестеренко И.Э.
  • Патрикеев В.С.
  • Патрикеева Э.М.
SU133250A1
СПОСОБ ЗАПОЛНЕНИЯ РЕЗЕРВНЫХ ХРАНИЛИЩ СЖИЖЕННЫМ ПРИРОДНЫМ ГАЗОМ 2012
  • Лазарев Александр Николаевич
  • Косенков Валентин Николаевич
  • Савчук Александр Дмитриевич
RU2488758C1
US 5916260 A1, 29.06.1999
US 20090107174 A1, 30.04.2009
Roberts M.J
Briton refrigeration cycles for small-scale LNG / Mark J
Roberts, Fei Chen, Oznur Saygi-Arslan// Gas Processing
Устройство для закрепления лыж на раме мотоциклов и велосипедов взамен переднего колеса 1924
  • Шапошников Н.П.
SU2015A1
- Vol
Очаг для массовой варки пищи, выпечки хлеба и кипячения воды 1921
  • Богач Б.И.
SU4A1
- P
Прибор с двумя призмами 1917
  • Кауфман А.К.
SU27A1

RU 2 673 642 C1

Авторы

Рузманов Александр Юрьевич

Воронов Владимир Александрович

Даты

2018-11-28Публикация

2017-10-20Подача