Изобретение относится к области производства биодизельных топлив на основе возобновляемого органического сырья, и может быть использовано для целей транспортной отрасли и в энергетике, а именно к СВЧ-устройствам для получения биодизельного топлива из растительных масел.
Биотоплива из возобновляемого растительного сырья используют в альтернативной энергетике для улучшения экологических показателей и снижения влияния техногенных факторов на изменение климата.
Известно устройство для получения биодизельного топлива, включающее рабочую емкость, в которой осуществляется реакция переэтерификации растительного масла, центрифугу и трубопроводы (патент РФ №2393006 МПК B01F 5/00, опубл. 27.06.2010).
Недостатком известного устройства является наличие центрифуги в составе устройства, которое требует регулярного профилактического обслуживания, сокращает его ресурс и увеличивает вероятность травматизма.
Известно устройство для получения МЭЖК, включающее рабочую емкость, насос и трубопровод (патент РФ №82579 МПК B01F 3/00, опубл. 10.05.2009).
Существенным недостатком известного устройства является относительно низкая степень конверсии некоторых видов органического сырья, в частности, масел и жиров с высоким содержанием свободных жирных кислот (СЖК). Кроме того, известное устройство не обеспечивает достаточно точного термостатирования реагентов в рабочей зоне, что может привести к перегреву и выкипанию метанола. При этом не гарантируется стабильность и повторяемость результатов технологического процесса.
Наиболее близким по технической сущности к предлагаемому изобретению является установка для получения биодизельного топлива в СВЧ-поле, состоящая из рабочей емкости, снабженной перекидным клапаном, и насоса, соединенных в замкнутый контур прямым трубопроводом с врезанным в него регулировочным клапаном и обратным трубопроводом, волновода, магнетрона, герметично соединенного с волноводом, блока питания магнетрона, соединенного с магнетроном кабелем питания, и блока управления регулировочным клапаном, соединенного сигнальными кабелями с термодатчиком, расположенным в обратном трубопроводе, и регулировочным клапаном, при этом часть прямого трубопровода, выполненная из диэлектрического материала, прозрачного для СВЧ-поля, находится внутри волновода (патент РФ №139141, МПК B01J 19/12, опубл. 10.04.2014).
Недостатком известной установки являются низкая производительность и недостаточная конверсия получаемого биодизельного топлива.
Задачей предлагаемого изобретения является создание надежного и безопасного технологического энергосберегающего СВЧ-устройства высокой производительности для получения биотоплива под воздействием СВЧ-поля
В результате использования предлагаемого изобретения обеспечивается энергосберегающий технологический процесс получения биотоплива при высокой конверсии растительных масел за счет того, что излучатель СВЧ-энергии выполнен в виде рупора и вводится в реактор непосредственно внутрь обрабатываемого сырья с полным поглощением излучаемой СВЧ-энергии.
Вышеуказанный технический результат достигается тем, что в предлагаемом энергосберегающем СВЧ-устройстве для получения биодизельного топлива, состоящем из реактора, магнетрона, излучателя СВЧ-энергии, трубопровода, термодатчика, блока управления и насоса для подачи сырья, согласно изобретению, излучатель СВЧ-энергии выполнен в виде металлического рупора, длина которого обеспечивает максимальную мощность излучаемой энергии у нижнего основания излучателя, при этом излучатель соединен верхним основанием с магнетроном, а нижним основанием через диэлектрическую вставку введен в реактор непосредственно внутрь обрабатываемого сырья, причем блок управления соединен с магнетроном, с датчиком температуры реакционной смеси и регулировочным клапаном, который установлен в трубопроводе для изменения скорости подачи сырья по замкнутому контуру трубопровода в реактор.
Сущность предлагаемого, изобретения поясняется чертежом, на котором представлена общая схема СВЧ-устройства.
Энергосберегающее СВЧ-устройство для получения биодизельного топлива содержит магнетрон 1, блок управления СВЧ-установкой 2, прибор для индикации информации 3, излучатель СВЧ-энергии 4, реактор 5, датчик температуры реакционной смеси 6, стенки реактора 7, вставку из диэлектрического материала 8, регулировочный клапан 9, замкнутый контур трубопровода 10, насос 11, сливной кран 12 в. замкнутом контуре трубопровода 10.
Излучатель СВЧ-энергии 4 выполнен в виде металлического рупора, изготовленного, например из меди, длина которого соответствует максимальной мощности излучаемой энергии у нижнего основания излучателя 4, который соединен верхним основанием с магнетроном 1, а нижним основанием через диэлектрическую вставку 8 вводится в реактор 5 непосредственно внутрь обрабатываемого сырья для полного поглощения СВЧ-энергии
Блок управления СВЧ-установкой 2 соединен с магнетроном 1, с датчиком температуры реакционной смеси 6 и регулировочным клапаном 9 регулировочным клапаном, который установлен в трубопроводе 10 для изменения скорости подачи сырья по замкнутому контуру трубопровода в реактор 5. Насос 11 соединен с замкнутым контуром трубопровода 10, который в свою очередь через стенки 7 осуществляет перемешивание обрабатываемого сырья в реакторе 5.
Работает энергосберегающее СВЧ-устройство для получения биодизельного топлива следующим образом.
Предварительно подготовленную исходную смесь, состоящую из растительного масла, изопропилового спирта и катализатора, заливают в реактор 5, из которого смесь насосом 11 по замкнутому трубопроводу 10 подается в реактор 5 для перемешивания и обрабатывается неоднократно электромагнитным СВЧ-полем, создаваемым магнетроном 1, которое через СВЧ-излучатель 4 проходит через вставку из диэлектрического материала 8, прозрачную для СВЧ-поля, расположенную в нижнем основании излучателя 4 и воздействует на обрабатываемое сырье. Обработанная смесь по трубопроводу 10 вновь поступает в реактор 5. Таким образом, обработка сырья производится многократно в замкнутом контуре. После полного завершения процесса обработки продукты реакции (изопропиловые эфиры растительного масла вместе с глицериносодержащим осадком) направляют на сепарацию и очистку через сливной кран 12.. Управление процессом осуществляют посредством блока управления 2, в который от термодатчика 6 по сигнальному кабелю поступает сигнал, пропорциональный текущему значению температуры реакционной среды в реакторе 5. Этот сигнал сравнивается с установленным программно рабочим значением (в диапазоне 80-90°С) и вырабатывается сигнал управления, который по сигнальному кабелю передается на регулировочный клапан 9 в трубопроводе 10, чем достигается регулирование скорости потока обрабатываемой смеси таким образом, чтобы температура смеси всегда соответствовала установленному рабочему значению.
Как известно, температура является одним из основных параметров процесса, определяющим скорость реакции, состав и, следовательно, производительность установки и потребительские свойства конечного продукта, в частности степень термохимической конверсии масел в биодизельное топливо (изопропиловые эфиры жирных кислот) в нашей установке. В предлагаемой установке постоянство рабочей температуры обеспечивается за счет регулирования скорости потока обрабатываемой смеси, путем сохранения баланса теплоты, подводимой к обрабатываемой смеси при поглощении СВЧ-излучения, с одной стороны, и теплоты, отдаваемой ею окружающей среде при многократном прохождении потоком по той части установки, которая находится вне действия электромагнитного СВЧ-поля (т.е., за пределами реактора 5) и имеет возможность рассеивать тепловую энергию в окружающую среду.
При работающем насосе 11 и подаче СВЧ-энергии в реактор 5 время проведения реакции переэтерификации в зависимости от загрузки составляет 10-20 минут, тем самым сокращается время получения биодизельного топлива из растительного сырья в несколько раз по сравнению с известными технологиями.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ ПОЛУЧЕНИЯ БИОДИЗЕЛЬНОГО ТОПЛИВА ИЗ СЫРЬЯ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ | 2014 |
|
RU2559357C1 |
Способ и устройство обеззараживания наносекундными электрическими импульсами сыпучих кормов для животноводства и птицеводства | 2017 |
|
RU2671390C1 |
Система питания автотракторного дизеля | 2020 |
|
RU2732648C1 |
Способ получения биодизельного топлива и установка для его осуществления | 2019 |
|
RU2714306C1 |
Энергоэффективный экструдер | 2023 |
|
RU2807219C1 |
ПРОМЫШЛЕННОЕ УСТРОЙСТВО ДЛЯ ЭКСТРАКЦИИ ЦЕННЫХ ВЕЩЕСТВ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ С ПОМОЩЬЮ СВЧ-ЭНЕРГИИ | 2002 |
|
RU2216575C2 |
СПОСОБ УПРАВЛЕНИЯ ТЕХНОЛОГИЕЙ ПОЛУЧЕНИЯ БИОДИЗЕЛЬНОГО ТОПЛИВА В СВЕРХКРИТИЧЕСКИХ УСЛОВИЯХ | 2021 |
|
RU2767690C1 |
СПОСОБ ЭКСТРАКЦИИ ЦЕННЫХ ВЕЩЕСТВ ИЗ РАСТИТЕЛЬНОГО СЫРЬЯ С ПОМОЩЬЮ СВЧ-ЭНЕРГИИ | 2002 |
|
RU2216574C2 |
СПОСОБ СУШКИ СЫПУЧИХ ДИЭЛЕКТРИЧЕСКИХ МАТЕРИАЛОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ | 2007 |
|
RU2330225C1 |
ЖИДКОСТНЫЙ РАКЕТНЫЙ ДВИГАТЕЛЬ | 2015 |
|
RU2612232C1 |
Изобретение относится к области производства биодизельных топлив на основе возобновляемого органического сырья и может быть использовано для целей транспортной отрасли и в энергетике, а именно к СВЧ-устройствам для получения биодизельного топлива из растительных масел. Энергосберегающее СВЧ-устройство для получения биодизельного топлива состоит из реактора 5, магнетрона 1, излучателя СВЧ-энергии 4, трубопровода, термодатчика 6, блока управления 2 и насоса для подачи сырья 11, при этом излучатель СВЧ-энергии 4 выполнен в виде металлического рупора, длина которого обеспечивает максимальную мощность излучаемой энергии у нижнего основания излучателя, излучатель 4 соединен верхним основанием с магнетроном 1, а нижним основанием через диэлектрическую вставку 8 введен в реактор 5 непосредственно внутрь обрабатываемого сырья, причем блок управления 2 соединен с магнетроном 1, с датчиком температуры реакционной смеси 6 и регулировочным клапаном 9, который установлен в трубопроводе для изменения скорости подачи сырья по замкнутому контуру трубопровода 10 в реактор 5. В результате использования изобретения обеспечивается энергосберегающий технологический процесс получения биотоплива при высокой конверсии растительных масел. 1 ил.
Энергосберегающее СВЧ-устройство для получения биодизельного топлива, состоящее из реактора, магнетрона, излучателя СВЧ-энергии, трубопровода, термодатчика, блока управления и насоса для подачи сырья, отличающееся тем, что излучатель СВЧ-энергии выполнен в виде металлического рупора, длина которого обеспечивает максимальную мощность излучаемой энергии у нижнего основания излучателя, при этом излучатель соединен верхним основанием с магнетроном, а нижним основанием через диэлектрическую вставку введен в реактор непосредственно внутрь обрабатываемого сырья, причем блок управления соединен с магнетроном, с датчиком температуры реакционной смеси и регулировочным клапаном, который установлен в трубопроводе для изменения скорости подачи сырья по замкнутому контуру трубопровода в реактор.
Способ контроля качества электрической точечной сварки | 1960 |
|
SU139141A1 |
СПОСОБ ПОЛУЧЕНИЯ БИОДИЗЕЛЬНОГО ТОПЛИВА ИЗ СЫРЬЯ РАСТИТЕЛЬНОГО ПРОИСХОЖДЕНИЯ | 2014 |
|
RU2559357C1 |
KR 0100860207 В1, 24.09.2008 | |||
T | |||
MICHAEL BAMARD et al., Continuous-Flow Preparation of Biodiesel Using Microwave Heating, "Energy & Fuels", 2007, 21, 1777-1781 | |||
ДВОРЕЦКИЙ Д.С | |||
и др., ТЕХНОЛОГИЯ ПОЛУЧЕНИЯ БИОДИЗЕЛЬНОГО ТОПЛИВА С ИСПОЛЬЗОВАНИЕМ ГЕТЕРОФАЗНЫХ КАТАЛИЗАТОРОВ И СВЧ-НАГРЕВА, "ВОПРОСЫ СОВРЕМЕННОЙ НАУКИ И ПРАКТИКИ", 2012, СПЕЦИАЛЬНЫЙ ВЫПУСК (39), стр.136-143. |
Авторы
Даты
2018-12-19—Публикация
2017-12-28—Подача