КАТАЛИЗАТОР ДЛЯ ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8 Российский патент 2019 года по МПК B01J29/68 B82Y40/00 C07C5/27 

Описание патента на изобретение RU2676704C1

Данное изобретение относится к катализатору для изомеризации ароматических углеводородов С-8 и может быть использовано в нефтеперерабатывающей и нефтехимической отраслях промышленности.

Пара-ксилол - основной продукт процесса изомеризации ароматических углеводородов С-8, является важным сырьем для производства терефталевой кислоты, полиэтилентерефталата, а также используется для производства красок, пестицидов и в медицине. Пара-ксилол получают путем изомеризации орто- и мета-ксилолов и этилбензола.

В качестве катализаторов процесса изомеризации ксилолов и этилбензола наиболее часто используют гетерогенные бифункциональные кислотные каталитические системы, состоящие из носителя, включающего в себя активную фазу носителя и связующее, в основном бемит, и одного или нескольких активных металлов, наиболее активные из которых платиновые металлы.

Основными требованиями к катализаторам изомеризации ароматических углеводородов С-8 является их высокая активность и селективность и, как следствие, высокий выход пара-ксилола. При этом также необходимо обеспечить низкие потери ксилолов.

Катализаторы процесса изомеризации, в основном, состоят из носителя, активная фаза которого представляет собой молекулярные сита различного состава, и активного металла (металлов). При получении активного катализатора существенную роль играют свойства используемой активной фазы носителя. Наиболее важными характеристиками, определяющими эти свойства являются: удельная поверхность, кислотность, объем мезо-микро пор, термостабильность, склонность к закоксованию и другие. В качестве активной фазы носителя, обладающей выраженными кислотными свойствами часто используют цеолиты, в том числе 28М-5 (1Ш 2360736, СШ05772058 (А), СШ06925339 (А), ^02017030906 (А1). Недостатком указанных цеолитов является их микропористая структура, которая затрудняет диффузию углеводородного сырья к активным центрам катализатора, что снижает конверсию ксилолов, ускоряет процессы коксообразования и дезактивации катализатора. Для улучшения диффузии сырья к каталитическим центрам, т.е. объема макро- и мезопор используют различные методы модифицирования цеолитов: удаление силикатной компоненты, использование органических компонентов при приготовлении с их последующим термическим разложением и т.д. В работе €N106925339 (А) описан катализатор изомеризации на основе цеолитов 8АР0-5, 8АР0-11, МСМ-22, И2М-8 и МСМ-49 или их смесей. Носитель для катализатора готовят на основе цеолита, полиакриламида, полилактида и окида алюминия. Удаление органических компонентов ведет к образованию микро-мезопористым кислотных катализаторов. В состав указанных катализаторов входят соли металлов (молибдена, никеля или кобальта), которые наносят методом пропитка носителя с последующей прокалкой при 500-580°С. Данные катализаторы характеризуются высокой конверсией в реакции изомеризации ароматического сырья. В ^02017030906 (А1) описан способ модифицирования цеолита 28М-5, который заключается в удалении силикатной компоненты путем контакта исходного цеолита с отношением SiO2/А1203 20-50 и поверхностью мезопор от 50 до 200 м /г с щелочью в реакторе при 20-100°С в течение максимум 10 часов, последующей кислотной обработкой и прокаливанием при 300-700°С в течение 0,2-6 часов. В результате получают цеолит с отношением SiO2/А12Оз 20-150 и поверхностью мезопор от 100 до 400 м /г.

Использование в составе катализаторов изомеризации аморфных молекулярных сит также позволяет увеличить объем мезопор (ЕР 1250287 В1, ЕР 1194236, Ш 6797849, Ш 5705726, Ш 8692044). Катализаторы могут состоять из цеолита, например, 28М-5, цеолита Бета, МСМ-22 и аморфного мезопористого оксида кремния, например, МСМ-41 или МСМ-48. При этом использование только аморфных мезопористых молекулярных сит в процессе изомеризации ароматических углеводородов С-8 в качестве активной фазы носителя не нашло широкого применения в связи с низкой термической стабильностью данных материалов.

Наиболее близким к настоящему изобретению аналогом является патент И82003017937, 2003 в котором описаны бифункциональные катализаторы изомеризации на основе мезопористого аморфного алюмосиликата типа А1-МСМ-41 и активного металла, предпочтительно платиновой группы. В патенте описан способ, согласно которому А1-МСМ-41 получают путем внедрения алюминия в структуру МСМ-41 после его получения гидротермальным методов, далее носитель пропитывают металлом платиновой группы и прокаливают. Данный катализатор предлагается использовать для процессов изомеризации углеводородного сырья, в частности для изомеризации н-алканов. Недостатком указанного катализатора является его невысокая каталитическая активность в процессах изомеризации ароматического сырья С-8 или ксилолов, что в первую очередь связано с его низкой термической стабильностью, которая приводит к быстрой дезактивации катализатора.

Проблема, на решение которой направлено настоящее изобретение, заключается в создании катализатора для изомеризации ароматических углеводородов С-8, обеспечивающего увеличение конверсии сырья и выхода целевого пара-ксилола.

Указанная проблема решается описываемым катализатором для изомеризации ароматических углеводородов С-8, состоящего из носителя, содержащего, % масс.

- упорядоченный алюмосиликат типа А1-МСМ-41- упорядоченный алюмосиликат типа А1-МСМ-41 10,0-75,0

- алюмосиликатные нанотрубки 5,0-70,0

- гамма-оксид алюминия- гамма-оксид алюминия остальное, до 100,

и металла платиновой группы, нанесенного на носитель в количестве 0,1 - 5,0 % от массы катализатора, причем активная фаза носителя, состоящая из упорядоченного алюмосиликата типа А1-МСМ-41 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа А1-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок.

Достигаемый технический результат заключается в формировании системы пор и каналов для обеспечения высокой термической стабильности и активности катализатора, что обусловлено использованием иерархического алюмосиликатного материала.

Сущность изобретения заключается в следующем.

Описываемый катализатор изомеризации ароматических углеводородов С-8 состоит из носителя, содержащего, % масс.

- упорядоченный алюмосиликат типа А1-МСМ-41 10,0-75,0

- алюмосиликатные нанотрубки 5,0-70,0

- гамма-оксид алюминия- гамма-оксид алюминия остальное, до 100,

и металла платиновой группы, нанесенного на носитель в количестве 0,1 - 5,0 % от массы катализатора, причем активная фаза носителя, состоящая из упорядоченного алюмосиликата типа А1-МСМ-41 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа А1-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок.

Введение в катализатор алюмосиликатных нанотрубок позволяет сформировать систему пор и каналов, которая способствует увеличению конверсии сырья и выхода целевого пара-ксилола, а также существенному повышению термической стабильности указанного катализатора.

Описываемый катализатор получают следующим образом.

Цетилтриметиламмоний бромид (ЦТАБ) растворяют в дистиллированной воде при интенсивном перемешивании, далее в полученный раствор ПАВ добавляют изопропиловый спирт и перемешивают в течение 15-40 минут при температуре близкой к комнатной до полного растворения ЦТАБ. Алюмосиликатные нанотрубки, диспергируют в течение 30-60 минут до полного диспергирования. Алюмосиликатные нанотрубки представляют собой природные или синтетические алюмосиликаты, имеющие строение многослойных или однонослойных нанотрубок, сформированных за счет скручивания слоистых структур глин типа каолина, монтмориллонита. Предпочтительно использование таких природных алюмосиликатных нанотрубок, как, например, галлуазит, иммоголит. При использовании галлуазитных нанотрубок предпочтительно использовать галлуазитные нанотрубки с внешним диаметром 30-50 нм, внутренним диаметром 10-25 нм и длиной 500 нм - 2 мкм.

В полученную смесь по каплям добавляют кремниевый прекурсор, предпочтительно тетраэтоксисилан (ТЭОС). К раствору кремниевого прекурсора по каплям добавляют раствор прекурсора алюминия, например, изопропоксид алюминия в изопропиловом спирте. Доводят рН раствора до 10-11, перемешивают в течение 4-6 часов и выдерживают 18-26 часов при комнатной температуре. Далее смесь сушат при температуре 95-105°С в сушильном шкафу, отфильтровывают и промывают. После высыхания полученный материал подвергают ступенчатой сушке при 75-80, 85-95, 95-105, 110-120°С в течение 4-7 часов и прокаливают в токе воздуха при 450-550°С.

В результате получают активную фазу носителя, состоящую из упорядоченного алюмосиликата типа А1-МСМ-41 и алюмосиликатных нанотрубок, представляющую собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа А1-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок.

Полученный иерархический алюмосиликатный материал обрабатывают раствором азотной кислоты с концентрацией 0,05-2 М и смешивают с бемитом. Пластичную массу формуют в виде экструдатов толщиной 1-4 мм и длиной 10-40 мм. Экструдаты сушат при 60-120°С в течение 8-48 часов и прокаливают на воздухе при температуре 500-650°С с получением носителя. На полученный носитель наносят металл платиновой группы в количестве 0,1 - 5,0 % от массы катализатора.

Процесс изомеризации ароматических углеводородов С-8 проводят, предпочтительно, в диапазоне температур 380-460°С, диапазоне давлений водорода 0,5-3,0 МПа, соотношениях Н2/сырье, равном 2-10:1 и объемной скорости подачи сырья 0,5-3 ч'1.

Высокая активность катализаторов достигается за счет наличия активной фазы носителя, представляющей собой иерархический алюмосиликатный материал. Указанный иерархический алюмосиликатный материал характеризуется высокой термической стабильностью, обусловленной армирующим действием алюмосиликатных нанотрубок, что позволяет сохранять структуру катализатора в условиях проведения процесса изомеризации ароматического сырья С-8.

На представленной фигуре приведены рентгенограммы образцов активной фазы носителя катализатора, состоящей из упорядоченного алюмосиликата типа А1-МСМ-41 (60 %масс.) и нанотрубок галлуазита (40 %масс.) -позиции 1 и 2, соответственно, а также исходного галлуазита - позиция 3. Из данной фигуры видно, что активная фаза носителя представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа А1-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок, о чем свидетельствуют характерные для алюмосиликата типа МСМ-41 рефлексы в области малых углов (2,1; 3,7; 4,2 20) (позиция 1) и отсутствие рефлексов (11,7; 19,9; 24,1; 26,6; 34,8; 35,3; 37,7 20) (позиция 2), относящихся к нанотрубкам галлуазита. Наблюдается широкий пик в области 15-30 29, указывающий на то, что алюмосиликат типа А1-МСМ-41 полностью покрывает нанотрубки галлуазита.

Ниже представлены примеры, иллюстрирующие изобретение, но не ограничивающие его. В приведенной таблице представлены результаты проведенных испытаний.

Пример 1

Используют катализатор, состоящий из носителя, содержащего, %масс: упорядоченный алюмосиликат с отношением Si/А1, равным 40 - 25,0, алюмосиликатные нанотрубки - 30,0, гамма-оксид алюминия 45,0, и нанесенной на носитель платины в количестве 1,0% от массы катализатора.

При этом активная фаза носителя, состоящая из упорядоченного алюмосиликата типа А1-МСМ-41 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа А1-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок.

Проводят изомеризацию ароматического сырья, содержащего % масс: этилбензол -10, пара-, орто- и мета-ксилол 10, 20, 60, соответственно.

Процесс проводят в проточной установке со стационарным слоем катализатора при 440°С, давлении водорода 2,4 МПа, объемном соотношении Н2/сырье, равном 5:1 и объемной скорости подачи сырья 2 ч"1. При данных условиях проведения процесса получают следующие результаты: конверсия этилбензола составляет 60% отн., содержание в продукте изомеризации орто- и пара-ксилолов 21,4%масс. и 22,1% масс, соответственно. Потеря целевых орто- и пара-ксилолов составляет 2,1% масс.

Пример 2.

Используют катализатор, состоящий из носителя, содержащего, %масс: упорядоченный алюмосиликат с отношением Si/А1, равным 10 - 35,0, алюмосиликатные нанотрубки - 20,0, гамма-оксид алюминия 45,0, и нанесенной на носитель платины в количестве 1,0% от массы катализатора.

При этом активная фаза носителя, состоящая из упорядоченного алюмосиликата типа А1-МСМ-41 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа А1-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок.

Процесс проводят в проточной установке со стационарным слоем катализатора при 440°С, давлении водорода 2,4 МПа, объемном соотношении Н2/сырье, равном 5:1 и объемной скорости подачи сырья 2,0 ч"1. При данных условиях проводят изомеризацию ароматического сырья, содержащего 10 %масс. этилбензола, 10 %масс, 20 %масс, 60 %масс. пара-, орто- и мета-ксилола, соответственно. В результате проведения процесса получают следующие данные: конверсия этилбензола составляет 68 %отн., содержание в смеси орто- и пара-ксилолов 22,7 %масс. и 23,3 %масс, соответственно. Потеря целевых орто- и пара-ксилолов составляет 2,8 % масс.

Пример 3.

Используют катализатор, состоящий из носителя, содержащего, %масс: упорядоченный алюмосиликат с отношением Si/А1, равным 20 - 25,0, алюмосиликатные нанотрубки - 30,0, гамма-оксид алюминия 45,0 , и нанесенной на носитель платины в количестве 1,0% от массы катализатора.

При этом активная фаза носителя, состоящая из упорядоченного алюмосиликата типа А1-МСМ-41 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа А1-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок.

Процесс проводят в проточной установке со стационарным слоем катализатора при 440°С, давлении водорода 2,4 МПа, объемном соотношении Н2/сырье, равном 5:1 и объемной скорости подачи сырья 2,0 ч"1. При данных условиях проводят изомеризацию ароматического сырья, содержащего 10%масс. этилбензола, 10%масс, 20%масс, 60%масс. пара-, орто- и мета-ксилола соответственно. В результате проведения процесса получают следующие данные: конверсия этилбензола составляет 68% отн., содержание в смеси орто- и пара-ксилолов 22,6 и 23,1% масс, соответственно. Потеря целевых орто- и пара-ксилолов составляет 2,4% масс.

Пример 4.

Используют катализатор, состоящий из носителя, содержащего, %масс: упорядоченный алюмосиликат с отношением Si/А1, равным 40 - 35,0, алюмосиликатные нанотрубки - 20,0, гамма-оксид алюминия 45,0, и нанесенной на носитель платины в количестве 1,0% от массы катализатора.

При этом активная фаза носителя, состоящая из упорядоченного алюмосиликата типа А1-МСМ-41 и алюмосиликатных нанотрубок представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа А1-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок.

Процесс проводят в проточной установке со стационарным слоем катализатора при 440°С, давлении водорода 2,4 МПа, объемном соотношении Н2/сырье, равном 5:1 и объемной скорости подачи сырья 2,0 ч"1. При данных условиях проводят изомеризацию ароматического сырья, cодержащего 10%масс. этилбензола, 10%масс, 20%масс, 60%масс. пара-, орто- и мета-ксилола соответственно. В результате проведения процесса получают следующие данные: конверсия этилбензола составляет 72%отн., содержание в смеси орто- и пара-ксилолов 23,5 и 23,8%масс, соответственно. Потеря целевых орто- и пара-ксилолов составляет 2,2%масс.

Использование описываемого катализатора, содержащего компоненты в иных концентрациях, входящих в заявленный интервал, приводит к аналогичным результатам. Использование компонентов в количествах, выходящих за данный интервал, не приводит к желаемым результатам.

Таблица

№ примера п/п Удельная площадь поверхнос
ти по методу
БЭТ,
м2
Конверсия этил-бензола, % масс. Содержание в смеси ксилолов, % масс. Потеря целевых орто-и пара-ксилолов, % масс.
Орто-ксилола Пара-ксилола 1 311 60 21,4 22,1 2,1 2 343 68 22,7 23,3 2,8 3 446 66 22,6 23,1 2,4 4 696 72 23,5 23,8 2,2

Из данных таблицы следует, что все используемые в приведенных примерах катализаторы проявляют высокую активность в реакции изомеризации ароматических углеводородов С-8.

Так, конверсия этилбензола составляет 60-72 % отн., содержание в продукте изомеризации орто-ксилола - 21,4-23,5 % масс, содержание в продукте изомеризации пара-ксилола - 22,1-23,8 % масс, потеря целевых орто- и пара-ксилолов составляет 2,1-2,8 %масс.

Таким образом, описываемый катализатор обладает высокой активностью в процессе изомеризации ароматических углеводородов С-8, приводящей к увеличению конверсии сырья и выхода целевого пара-ксилола.

Похожие патенты RU2676704C1

название год авторы номер документа
ТЕРМОСТАБИЛЬНЫЙ КАТАЛИЗАТОР ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8 2017
  • Аникушин Борис Михайлович
  • Винокуров Владимир Арнольдович
  • Вутолкина Анна Викторовна
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Караханов Эдуард Аветисович
  • Кардашева Юлия Сергеевна
  • Максимов Антон Львович
  • Смирнова Екатерина Максимовна
  • Ставицкая Анна Вячеславовна
  • Чудаков Ярослав Александрович
RU2665040C1
КАТАЛИЗАТОР ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8 2018
  • Артемова Мария Игоревна
  • Винокуров Владимир Арнольдович
  • Вутолкина Анна Викторовна
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Демихова Наталия Руслановна
  • Иванов Евгений Владимирович
  • Кардашева Юлия Сергеевна
  • Левшаков Николай Сергеевич
  • Лысенко Сергей Васильевич
  • Смирнова Екатерина Максимовна
  • Ставицкая Анна Вячеславовна
RU2676706C1
МИКРО-МЕЗОПОРИСТЫЙ КАТАЛИЗАТОР ИЗОМЕРИЗАЦИИ КСИЛОЛОВ 2019
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Ставицкая Анна Вячеславовна
  • Артемова Мария Игоревна
  • Демихова Наталия Руслановна
  • Смирнова Екатерина Максимовна
  • Максимов Антон Львович
  • Вутолкина Анна Викторовна
  • Ролдугина Екатерина Алексеевна
  • Караханов Эдуард Аветисович
RU2702586C1
БИЦЕОЛИТНЫЙ КАТАЛИЗАТОР ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8 2019
  • Глотов Александр Павлович
  • Винокуров Владимир Арнольдович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Ставицкая Анна Вячеславовна
  • Любименко Валентина Александровна
  • Артемова Мария Игоревна
  • Демихова Наталия Руслановна
  • Смирнова Екатерина Максимовна
  • Мазурова Кристина Михайловна
  • Караханов Эдуард Аветисович
  • Максимов Антон Львович
  • Куликов Леонид Андреевич
  • Цаплин Дмитрий Евгеньевич
RU2707179C1
Микро-мезопористый катализатор изомеризации ароматической фракции С-8 2023
  • Винокуров Владимир Арнольдович
  • Демихова Наталия Руслановна
  • Глотов Александр Павлович
  • Киреев Георгий Александрович
  • Климовский Владимир Алексеевич
  • Абрамов Егор Сергеевич
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Чередниченко Кирилл Александрович
  • Коницын Дмитрий Сергеевич
RU2820453C1
ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ ПАРА-КСИЛОЛА ДО ТЕРЕФТАЛЕВОЙ КИСЛОТЫ 2019
  • Глотов Александр Павлович
  • Винокуров Владимир Арнольдович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Ставицкая Анна Вячеславовна
  • Мазурова Кристина Михайловна
  • Мельников Вячеслав Борисович
  • Сосна Михаил Хаймович
  • Караханов Эдуард Аветисович
  • Максимов Антон Львович
  • Золотухина Анна Владимировна
  • Вутолкина Анна Викторовна
  • Егазарьянц Сергей Владимирович
RU2722302C1
НАНОСТРУКТУРИРОВАННЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С6-С8 2019
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Засыпалов Глеб Олегович
  • Иванов Евгений Владимирович
  • Копицын Дмитрий Сергеевич
  • Недоливко Владимир Владимирович
  • Новиков Андрей Александрович
  • Семенов Антон Павлович
  • Ставицкая Анна Вячеславовна
  • Чудаков Ярослав Александрович
RU2696957C1
Мезопористый алюмосиликатный катализатор окислительного дегидрирования пропана 2023
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Новиков Андрей Александрович
  • Решетина Марина Викторовна
  • Смирнова Екатерина Максимовна
  • Мельников Дмитрий Петрович
  • Иванов Евгений Владимирович
RU2825136C1
СПОСОБ ИЗОМЕРИЗАЦИИ КСИЛОЛА И ЭТИЛБЕНЗОЛА С ИСПОЛЬЗОВНИЕМ UZM-35 2010
  • Богдан Пола Л.
  • Джэн Денг-Янг
  • Николас Кристофер П.
  • Москосо Джейми Дж.
RU2514423C1
ДВУХСТАДИЙНЫЙ СПОСОБ ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ СОЕДИНЕНИЙ 2006
  • Чжоу Лубо
  • Мейер Грегори Ф.
  • Джонсон Джеймс А.
  • Бауэр Джон Э.
RU2365573C1

Иллюстрации к изобретению RU 2 676 704 C1

Реферат патента 2019 года КАТАЛИЗАТОР ДЛЯ ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8

Изобретение относится к нефтеперерабатывающей и нефтехимической отрасли промышленности. Заявлен катализатор для изомеризации ароматических углеводородов С-8, который состоит из носителя, содержащего, % масс.: упорядоченный алюмосиликат типа Аl-МСМ-41 10,0-75,0; алюмосиликатные нанотрубки 5,0-70,0; гамма-оксид алюминия - остальное до 100, и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора. Активная фаза носителя состоит из упорядоченного алюмосиликата типа Аl-МСМ-41 и алюмосиликатных нанотрубок и представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа Аl-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок. Достигаемый технический результат заключается в формировании системы пор и каналов для обеспечения высокой термической стабильности и активности катализатора, что обусловлено использованием иерархического алюмосиликатного материала. 1 ил., 1 табл., 4 пр.

Формула изобретения RU 2 676 704 C1

Катализатор для изомеризации ароматических углеводородов С-8, состоящий из носителя, содержащего, % масс.:

упорядоченный алюмосиликат типа Al-МСМ-41 10,0-75,0 алюмосиликатные нанотрубки 5,0-70,0 гамма-оксид алюминия остальное до 100,

и металла платиновой группы, нанесенного на носитель в количестве 0,1-5,0% от массы катализатора, причем активная фаза носителя, состоящая из упорядоченного алюмосиликата типа Al-МСМ-41 и алюмосиликатных нанотрубок, представляет собой иерархический алюмосиликатный материал, имеющий систему пор и каналов упорядоченного алюмосиликата типа Al-МСМ-41, сформированную на внешней и внутренней поверхностях алюмосиликатных нанотрубок.

Документы, цитированные в отчете о поиске Патент 2019 года RU2676704C1

US 20030017937 A1, 23.01.2003
КАТАЛИЗАТОР, СОДЕРЖАЩИЙ БЛАГОРОДНЫЙ МЕТАЛЛ НА НОСИТЕЛЕ ДЛЯ ИЗОМЕРИЗАЦИИ АЛКИЛАРОМАТИЧЕСКИХ СОЕДИНЕНИЙ (ВАРИАНТЫ) И СПОСОБ ЕГО ПОЛУЧЕНИЯ 1996
  • Шоукси Гуй
  • Южи Хао
  • Лижи Жоу
  • Женхуа Йинг
  • Йингбин Киао
  • Хаохуй Гу
  • Янкинг Ли
  • Боаю Ченг
  • Йиншуй Ванг
RU2137542C1
СПОСОБ ИЗОМЕРИЗАЦИИ НЕРАВНОВЕСНЫХ ПОТОКОВ СЫРЬЯ, СОДЕРЖАЩИХ КСИЛОЛЫ 2006
  • Богдан Пола Луси
  • Рикоск Джеймс Эдвард
  • Ларсон Роберт Бэнгт
  • Уитчёрч Патрик Чарльз
  • Бауэр Джон Эдвард
  • Квик Майкл Харри
RU2357946C2
Способ приготовления мыла 1923
  • Петров Г.С.
  • Таланцев З.М.
SU2004A1
US 7411103 B2, 12.08.2008.

RU 2 676 704 C1

Авторы

Артемова Мария Игоревна

Винокуров Владимир Арнольдович

Глотов Александр Павлович

Гущин Павел Александрович

Иванов Евгений Владимирович

Максимов Антон Львович

Смирнова Екатерина Максимовна

Ставицкая Анна Вячеславовна

Таланова Марта Юрьевна

Трофимов Арсений Юрьевич

Филиппова Татьяна Юрьевна

Чудаков Ярослав Александрович

Даты

2019-01-10Публикация

2018-06-28Подача