НАНОСТРУКТУРИРОВАННЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С6-С8 Российский патент 2019 года по МПК C07C13/18 C07C5/02 C07C5/10 B01J23/46 B82Y40/00 

Описание патента на изобретение RU2696957C1

Изобретение относится к катализаторам гидрирования ароматического сырья и может быть использовано в нефтехимической отрасли промышленности.

Процессы гидрирования ароматических соединений традиционно используют для производства важных продуктов нефтехимии.

Гидрирование бензола, в основном, направлено на производство циклогексана, используемого для производства капролактама, полимеризацией которого получают синтетическое волокно.

Ароматические углеводороды, являющиеся сырьем для каталитического гидрирования, как правило, получают путем дистилляции продуктов риформинга и/или пиролиза бензинов.

Конверсию бензола осуществляют путем каталитического гидрирования бензола в циклогексан.

В качестве катализаторов гидрирования ароматических углеводородов С6-С8 могут быть использованы катализаторы на основе благородных металлов VIII группы Периодической системы при проведении процесса в жидкой или газовой фазах. Газофазное гидрирование ароматических углеводородов осложняется отводом тепла, что в свою очередь негативно сказывается на селективности процесса. Гидрирование в жидкой фазе более предпочтительно, так как не требует сложного аппаратурного оформления, свойственного проведению процесса в газовой фазе. Кроме того, использование низких температур жидкофазного гидрирования обеспечивает значительно меньший выход побочных продуктов, снижение потерь. Поэтому наиболее предпочтительным является проведение процесса с использованием гетерогенных катализаторов в жидкой фазе. Последние в отличие от гомогенных не так чувствительны к содержанию воды в сырье, а экономические затраты на их регенерацию более приемлемы. Традиционно гетерогенный катализатор гидрирования ароматических соединений состоит из носителя, связующего и одного или нескольких активных металлов. В качестве активного компонента носителя наиболее часто используют оксиды алюминия (RU 2277079, 2001), кремния (RU 2404950, 2006), синтетические алюмосиликаты (RU 2296618, 2007). Применение носителя с мезопористой структурой оксида алюминия в качестве компонента катализатора описано в RU 2138329, 1999, RU 2198733, 2003, RU 2683776, 2015, US 5942645A, 1997, Е 0669162 В1, 1999, ЕР 0619143 А1, 1994, оксида кремния - в DE 2001128242 А1, 2001, CN 102753266 В, 2010, синтетических алюмосиликатов - в USA 5308814, 1994. В патенте RU 2138329, 1999 γ-оксид алюминия модифицируют хлором, оловом, оксидом кремния, оксидом вольфрама, триэтиленгликолем. Полученный катализатор обладает повышенной производительностью и устойчивостью к наличию соединений серы в сырье, кроме того он достаточно дешевый ввиду низкого содержания благородных металлов. В патенте CN 102753266 В катализатор готовят на аморфном оксиде кремния путем пропитки раствором активного металла и солями щелочноземельных металлов II группы. В патенте RU 2296618, 2005 в качестве носителя катализатора используют цеолит H-ZSM-5 с добавкой монтмориллонита или оксида алюминия, которые способствуют формированию высокодисперсных соединений активного металла. В данных работах показано, что использование катализаторов на основе мезопористых оксидов алюминия, кремния, цеолитов для гидрирования ароматических соединений в циклопарафины, позволяет существенно снизить долю побочных веществ при снижении потерь целевых продуктов. Известно, что мезопористые носители значительно увеличивают диффузию молекул субстрата к активным центрам, что обеспечивает наилучшую эффективность по сравнению с использованием микропористых материалов. В патенте DE 2001128242 А1, 2001 описаны легированные металлами VIII группы рутениевые суспензионные катализаторы гидрирования бензола в циклогексан (Pd, Pt или Rh). Такие катализаторы характеризуются высокой стоимостью из-за использования платиновых металлов, а отсутствие последних приводит к необходимости проведения процесса при более высоких температурах, что способствует увеличению содержания побочных продуктов гидрирования. Следует отметить, что катализаторы, имеющие в своем составе металлы VIII группы чувствительны к примесям влаги в сырье. Для решения этой проблемы проводят либо предварительную очистку сырья до минимально возможного содержания воды, либо используют катализаторы, характеризующиеся высоким содержанием активной фазы. Предварительная осушка сырья требует внедрения дополнительного оборудования и циклов производства, что значительно увеличивает эксплуатационные затраты. Повышение содержания благородных металлов экономически нецелесообразно в промышленном производстве, а замена таких металлов на более доступные требует повышения температуры процесса, что приводит не только к падению селективности по целевому продукту, но и более жесткому режиму работы технологического оборудования.

Наиболее близким по существу и назначению к предлагаемому изобретению является катализатор гидрирования ароматических углеводородов, представляющий собой рутений, нанесенный на пористую основу, имеющую мезо- и/или макропоры (RU 2404950, 2010). Наиболее оптимальными носителями являются активированный уголь, карбид кремния, окись алюминия, оксид кремния, окись титана, двуокись циркония или также их смеси. Предпочтительно используют окись алюминия, диоксид циркония или оксид кремния, наиболее предпочтительно - γ-окись алюминия или оксид кремния. Катализатор гидрирования предпочтительного состава получают методом нанесения рутения на основу с помощью пропитки носителя водными растворами солей рутения. Затем носитель, пропитанный раствором соли рутения, сушат при температурах от 110°С до 150°С и прокаливают. После прокаливания рутениевый катализатор активируют в токе водорода при температурах от 30 до 60°С. В качестве прекурсора катализатора используют ацетат рутения (III). Готовый катализатор содержит от 0,01 до 30% масс. рутения в пересчете на общую массу катализатора. Суммарный объем пор носителя составляет от 0,05 до 1.5 см3/г. Средний диаметр пор составляет от 5 до 20 нм. Структура распределения пор в носителе бимодальная, на макропоры приходится от 10 до 25% общего объема пор, на мезопоры от 55 до 75% общего объема пор. Процесс осуществляют в трубчатом реакторе непрерывного действия при давлении 20-32 атм. и температуре 60-120°С. Гидрированию по данному способу подвергают не только бензол, но и смесь бензола и толуола, смесь бензола и ксилолов или изомерную смесь ксилолов, или смесь бензола, толуола и ксилолов, или изомерную смесь ксилолов.

Недостатки известного катализатора заключаются в следующем. Несмотря на высокую конверсию бензола (99%.) в данном процессе, конверсия толуола в метилциклогексан не превышает 44%. Так же в данном патенте изучают влияние воды на гидрирование бензола. Для моделирования влияния воды проводят серию опытов в автоклаве до и после насыщения водой. Процесс осуществляют при температуре 100°С и давлении 32 атм. В результате катализатор показывает заметно пониженную активность. Кроме того, использование известного катализатора требует предварительной десульфуризации исходного сырья.

Технической проблемой, на которую направлено данное изобретение, является увеличение активности катализатора гидрирования ароматических углеводородов С6-С8 и повышение его устойчивости к дезактивации в присутствии воды, которая содержится в углеводородном сырье.

Указанная проблема решается созданием наноструктурированного катализатора гидрирования ароматических углеводородов С6-С8, состоящего из носителя, содержащего, % масс.

алюмосиликатные нанотрубки 81-85 гидрофобизирующий компонент 15-19,

и рутения в виде наночастиц, нанесенного на носитель в количестве 0,5-6,0% от массы носителя, причем алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью, а рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости указанных нанотрубок

Получаемый технический результат заключается в обеспечении катализатором увеличения площади контакта молекул углеводородного сырья с каталитическими центрами, а также в предотвращении контакта наночастиц рутения с водой, содержащейся в исходном сырье, за счет интеркалирования наночастиц рутения - высокодисперсной активной фазы во внутреннюю полость алюмосиликатных нанотрубок с гидрофобизированной внешней поверхностью.

Согласно настоящему изобретению катализатор состоит из носителя и рутения, нанесенного на носитель.

Катализатор готовят в три этапа.

На первом этапе к алюмосиликатным нанотрубкам - к природным или синтетическим алюмосиликатным нанотрубкам с общей формулой Al2Si2(OH)4*nH2O, где n=0-2, предпочтительно, галлуазиту с химической формулой Al2Si2(OH)4*2H2O, длиной 0,5-2 мкм, внешним и внутренним диаметром 40-60 и 10-30 нм соответственно, добавляют пероксид водорода и перемешивают в течение 12-24 ч. Далее смесь кипятят в течение 1-3 ч, после чего охлаждают до комнатной температуры. Твердую часть образованного продукта отделяют центрифугированием и промывают ее деионизированной водой путем трехкратного ресуспендирования с последующим центрифугированием. Далее обезвоживают полученные алюмосиликатные нанотрубки методом лиофильной сушки.

На втором этапе предобработанные вышеуказанным образом алюмосиликатные нанотрубки диспергируют в толуоле, возможно, с использованием ультразвука, в течение 0,5-2 ч. Затем добавляют гидрофобизирующий компонент, в качестве которого используют, например, триметоксипропилсилан, триметоксиоктилсилан или триметоксиоктадецилсилан и помещают в шейкер на 12-24 ч. Далее отделяют твердую часть от образованного продукта центрифугированием и промывают ее последовательно толуолом и изопропанолом путем ресуспендирования с последующим центрифугированием и сушкой при температуре 60-90°С в течение 12-24 ч. с получением носителя. В результате проведений вышеуказанных этапов алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью.

На третьем этапе расчетное количество соли хлорида рутения (III) растворяют в деионизированной воде и добавляют в раствор полученные нанотрубки с гидрофобизированной внешней поверхностью. Указанную смесь помещают в ультразвуковую ванну до образования суспензии. Образовавшуюся суспензию подвергают воздействию излучения СВЧ разряда мощностью 600-1000 Вт в течение 1-5 минут, отделяют центрифугированием твердую фазу. Затем промывают указанную твердую фазу деионизированной водой путем трехкратного ресуспендирования с последующим центрифугированием и добавляют 0,1-1,0 М водного раствора боргидрида натрия для восстановления наночастиц рутения до нульвалентного состояния. После восстановления указанную твердую фазу промывают деионизированной водой от продуктов разложения боргидрида натрия, центрифугируют и высушивают в течение 12-24 часа при температуре 50-90°С.

Количество нанесенного на носитель рутения в виде наночастиц составляет 0,5-6,0% от массы носителя.

При этом рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости алюмосиликатных нанотрубок с гидрофобизированной внешней поверхностью.

Интеркалирование наночастиц рутения во внутреннюю полость алюмосиликатных нанотрубок и, как следствие, образование высокодисперсной активной фазы обеспечивает увеличение площади контакта молекул углеводородного сырья с каталитическими центрами. Гидрофобизированная внешняя поверхность алюмосиликатных нанотрубок предотвращает контакт наночастиц рутения с водой, что обуславливает дезактивацию катализатора в присутствии воды, которая содержится в углеводородном сырье. Кроме того, мезопористая внутренняя полость алюмосиликатных нанотрубок не создает стерических затруднений для доступа органических молекул к активным центрам катализатора, а структурные особенности нанотрубок позволяют осуществлять направленную модификацию их внутренней/внешней поверхностей, что невозможно при использовании традиционных носителей (оксиды алюминия, кремния, титана, алюмосиликаты). Кроме того, использование заявленного катализатора приводит к снижению температуры процесса гидрирования.

Гидрирование ароматических углеводородов С6-С8 проводят в реакторе периодического действия из нержавеющей стали с внутренним тефлоновым вкладышем при давлении водорода 2,0-4,0 МПа, предпочтительно при 3,0 МПа и температуре 60-140°С, предпочтительно при 60-80°С.

Ниже представлены примеры, иллюстрирующие изобретение, но не ограничивающие его.

Пример 1

Используют катализатор, содержащий, % масс: алюмосиликатные нанотрубки - 85, гидрофобизирующий компонент - 15, рутений - 0,5. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита (галлуазит), в качестве гидрофобизирующего компонента -триметоксипропилсилан.

Проводят гидрирование сырья, содержащего, %масс: бензол - 46,8, вода - 53,2. При этом получают следующие результаты: конверсия бензола составляет 100%, селективность по циклогексану - 100%.

Пример 2

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 85, гидрофобизирующий компонент - 15, рутений - 0,5. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксипропилсилан.

Проводят гидрирование сырья, содержащего, % масс: толуол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия толуола составляет 100%, селективность по метилциклогексану - 100%.

Пример 3

Используют катализатор, содержащий, % масс: алюмосиликатные нанотрубки - 85, гидрофобизирующий компонент - 15, рутений - 0,5. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксипропилсилан.

Проводят гидрирование сырья, содержащего, % масс: этилбензол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия этилбензола составляет 77,5%, селективность по этилциклогексану - 100%.

Пример 4

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 83,5, гидрофобизирующий компонент - 16,5, рутений - 4,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктилсилан.

Проводят гидрирование сырья, содержащего, %масс: бензол - 46,8, вода - 53,2. При этом получают следующие результаты: конверсия бензола составляет 100%, селективность по циклогексану - 100%.

Пример 5

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 83,5, гидрофобизирующий компонент - 16,5, рутений - 4,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктилсилан.

Проводят гидрирование сырья, содержащего, %масс: толуол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия толуола составляет 100%, селективность по метилциклогексану - 100%.

Пример 6

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 83,5, гидрофобизирующий компонент - 16,5, рутений - 4,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктилсилан.

Проводят гидрирование сырья, содержащего, % масс: этилбензол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия этилбензола составляет 67,2%, селективность по этилциклогексану - 100%.

Пример 7

Используют катализатор, содержащий, % масс: алюмосиликатные нанотрубки - 81,0, гидрофобизирующий компонент - 19,0, рутений - 6,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктадецилсилан.

Проводят гидрирование сырья, содержащего, % масс: бензол - 46,8, вода - 53,2. При этом получают следующие результаты: конверсия бензола составляет 100%, селективность по циклогексану - 100%.

Пример 8

Используют катализатор, содержащий, % масс: алюмосиликатные нанотрубки - 81,0, гидрофобизирующий компонент - 19,0, рутений - 6,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктадецилсилан.

Проводят гидрирование сырья, содержащего, % масс: толуол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия толуола составляет 100%, селективность по метилциклогексану - 100%.

Пример 9

Используют катализатор, содержащий, %масс: алюмосиликатные нанотрубки - 81,0, гидрофобизирующий компонент - 19,0, рутений - 6,0. В качестве алюмосиликатных нанотрубок используют нанотрубки галлуазита, в качестве гидрофобизирующего компонента - триметоксиоктадецилсилан.

Проводят гидрирование сырья, содержащего, %масс: этилбензол - 46,5, вода - 53,5. При этом получают следующие результаты: конверсия этилбензола составляет 77,2%, селективность по этилциклогексану - 100%.

Использование описываемого катализатора, содержащего компоненты в иных концентрациях, входящих в заявленный интервал приводит к аналогичным результатам. Использование компонентов, выходящих за данный интервал, не приводит к желаемым результатам.

Условия проведения процесса гидрирования в присутствии описываемого катализатора и полученные при этом результаты по приведенным примерам 1-9 приведены в таблице 1.

Из вышеприведенных данных следует, что описываемый катализатор устойчив к наличию воды в исходном сырье и обладает более высокой активностью по сравнению с известным. Так, конверсия толуола составляет 100%, что на 56-65% выше, чем при использовании известного катализатора; конверсия бензола и этилбензола составляет, 100% и до 77,5%, соответственно, селективность по метилциклогексану составляет 100%, что на 46,3-57,3% выше, чем при использовании известного катализатора; селективность по циклогексану и этилциклогексану составляет по 100% для каждого).

Похожие патенты RU2696957C1

название год авторы номер документа
Наноструктурированный катализатор гидродеоксигенации ароматических кислородсодержащих компонентов бионефти 2022
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Иванов Евгений Владимирович
  • Засыпалов Глеб Олегович
  • Прудников Владислав Сергеевич
  • Климовский Владимир Алексеевич
  • Вутолкина Анна Викторовна
  • Демихова Наталия Руслановна
  • Ставицкая Анна Вячеславовна
RU2797423C1
НАНОСТРУКТУРИРОВАННЫЙ КАТАЛИЗАТОР СЕЛЕКТИВНОГО ГИДРИРОВАНИЯ АЦЕТИЛЕНА 2020
  • Глотов Александр Павлович
  • Винокуров Владимир Арнольдович
  • Ставицкая Анна Вячеславовна
  • Любименко Валентина Александровна
  • Засыпалов Глеб Олегович
  • Недоливко Владимир Владимирович
  • Мельников Дмитрий Петрович
  • Решетина Марина Викторовна
  • Боев Севастьян Сергеевич
  • Чередниченко Кирилл Алексеевич
RU2752383C1
КАТАЛИЗАТОР ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8 2018
  • Артемова Мария Игоревна
  • Винокуров Владимир Арнольдович
  • Вутолкина Анна Викторовна
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Демихова Наталия Руслановна
  • Иванов Евгений Владимирович
  • Кардашева Юлия Сергеевна
  • Левшаков Николай Сергеевич
  • Лысенко Сергей Васильевич
  • Смирнова Екатерина Максимовна
  • Ставицкая Анна Вячеславовна
RU2676706C1
КАТАЛИЗАТОР ДЛЯ ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8 2018
  • Артемова Мария Игоревна
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Максимов Антон Львович
  • Смирнова Екатерина Максимовна
  • Ставицкая Анна Вячеславовна
  • Таланова Марта Юрьевна
  • Трофимов Арсений Юрьевич
  • Филиппова Татьяна Юрьевна
  • Чудаков Ярослав Александрович
RU2676704C1
ТЕРМОСТАБИЛЬНЫЙ КАТАЛИЗАТОР ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8 2017
  • Аникушин Борис Михайлович
  • Винокуров Владимир Арнольдович
  • Вутолкина Анна Викторовна
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Караханов Эдуард Аветисович
  • Кардашева Юлия Сергеевна
  • Максимов Антон Львович
  • Смирнова Екатерина Максимовна
  • Ставицкая Анна Вячеславовна
  • Чудаков Ярослав Александрович
RU2665040C1
БИЦЕОЛИТНЫЙ КАТАЛИЗАТОР ИЗОМЕРИЗАЦИИ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С-8 2019
  • Глотов Александр Павлович
  • Винокуров Владимир Арнольдович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Ставицкая Анна Вячеславовна
  • Любименко Валентина Александровна
  • Артемова Мария Игоревна
  • Демихова Наталия Руслановна
  • Смирнова Екатерина Максимовна
  • Мазурова Кристина Михайловна
  • Караханов Эдуард Аветисович
  • Максимов Антон Львович
  • Куликов Леонид Андреевич
  • Цаплин Дмитрий Евгеньевич
RU2707179C1
Наноструктурированный катализатор окислительного дегидрирования пропана в присутствии углекислого газа 2022
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Новиков Андрей Александрович
  • Решетина Марина Викторовна
  • Смирнова Екатерина Максимовна
  • Мельников Дмитрий Петрович
  • Рубцова Мария Игоревна
  • Киреев Георгий Александрович
RU2799071C1
ГЕТЕРОГЕННЫЙ КАТАЛИЗАТОР ОКИСЛЕНИЯ ПАРА-КСИЛОЛА ДО ТЕРЕФТАЛЕВОЙ КИСЛОТЫ 2019
  • Глотов Александр Павлович
  • Винокуров Владимир Арнольдович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Ставицкая Анна Вячеславовна
  • Мазурова Кристина Михайловна
  • Мельников Вячеслав Борисович
  • Сосна Михаил Хаймович
  • Караханов Эдуард Аветисович
  • Максимов Антон Львович
  • Золотухина Анна Владимировна
  • Вутолкина Анна Викторовна
  • Егазарьянц Сергей Владимирович
RU2722302C1
МНОГОФУНКЦИОНАЛЬНАЯ ДОБАВКА К ПОКРЫТИЯМ 2019
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Котелев Михаил Сергеевич
  • Крайнов Алексей Александрович
  • Мазурова Кристина Михайловна
  • Смирнова Анастасия Алексеевна
  • Ставицкая Анна Вячеславовна
  • Фахруллин Равиль Фаридович
  • Щукин Дмитрий Георгиевич
RU2733526C1
МЕЗОПОРИСТЫЙ БИМЕТАЛЛИЧЕСКИЙ КАТАЛИЗАТОР СИНТЕЗА ФИШЕРА-ТРОПША 2022
  • Винокуров Владимир Арнольдович
  • Глотов Александр Павлович
  • Гущин Павел Александрович
  • Иванов Евгений Владимирович
  • Мазурова Кристина Михайловна
  • Мияссарова Альбина Фаритовна
  • Ставицкая Анна Вячеславовна
RU2799070C1

Реферат патента 2019 года НАНОСТРУКТУРИРОВАННЫЙ КАТАЛИЗАТОР ГИДРИРОВАНИЯ АРОМАТИЧЕСКИХ УГЛЕВОДОРОДОВ С6-С8

Предложен наноструктурированный катализатор гидрирования ароматических углеводородов С6-С8, состоящий из носителя, содержащего, мас.%: алюмосиликатные нанотрубки 81-85, гидрофобизирующий компонент 15-19, и рутения в виде наночастиц, нанесенного на носитель в количестве 0,5-6,0% от массы носителя, где алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью, а рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости указанных нанотрубок. Технический результат – обеспечение катализатором увеличения площади контакта молекул углеводородного сырья с каталитическими центрами, а также предотвращения контакта наночастиц рутения с водой, содержащейся в исходном сырье, за счет интеркалирования наночастиц рутения – высокодисперсной активной фазы во внутреннюю полости алюмосиликатных нанотрубок с гидрофобизированной внешней поверхностью. 9 пр., 1 табл.

Формула изобретения RU 2 696 957 C1

Наноструктурированный катализатор гидрирования ароматических углеводородов С6-С8, состоящий из носителя, содержащего, мас.%:

алюмосиликатные нанотрубки 81-85, гидрофобизирующий компонент 15-19,

и рутения в виде наночастиц, нанесенного на носитель в количестве 0,5-6,0% от массы носителя, причем алюмосиликатные нанотрубки с гидрофобизирующим компонентом образуют алюмосиликатные нанотрубки с гидрофобизированной внешней поверхностью, а рутений в виде наночастиц образует высокодисперсную активную фазу во внутренней полости указанных нанотрубок.

Документы, цитированные в отчете о поиске Патент 2019 года RU2696957C1

НАНОСТРУКТУРИРОВАННЫЙ ПОРОШОК ТВЕРДОГО РАСТВОРА КОБАЛЬТ-НИКЕЛЬ И СПОСОБ ЕГО ПОЛУЧЕНИЯ 2013
  • Колмыков Роман Павлович
  • Захаров Юрий Александрович
  • Пугачев Валерий Михайлович
  • Додонов Вадим Георгиевич
RU2568858C2
НАНОЧАСТИЦЫ БЛАГОРОДНЫХ МЕТАЛЛОВ И СПОСОБ ИХ ПОЛУЧЕНИЯ 2007
  • Ларичев Юрий Васильевич
RU2351391C1
WO 2007085463 A1, 02.08.2007
Устройство для пневматической подачи сыпучего материала 1990
  • Гущин Владимир Михайлович
  • Галинтовский Виктор Иванович
  • Будницкий Владимир Семенович
  • Дегтярь Феликс Ильич
  • Мотовилова Галина Феодосьевна
SU1782885A1

RU 2 696 957 C1

Авторы

Винокуров Владимир Арнольдович

Глотов Александр Павлович

Гущин Павел Александрович

Засыпалов Глеб Олегович

Иванов Евгений Владимирович

Копицын Дмитрий Сергеевич

Недоливко Владимир Владимирович

Новиков Андрей Александрович

Семенов Антон Павлович

Ставицкая Анна Вячеславовна

Чудаков Ярослав Александрович

Даты

2019-08-07Публикация

2019-05-21Подача