СПОСОБ ОПРЕДЕЛЕНИЯ ОДНОРОДНОСТИ БЕТОНА В СЕЧЕНИИ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ Российский патент 2019 года по МПК G01N19/08 G01N3/24 

Описание патента на изобретение RU2676853C1

Изобретение относится к области контроля качества строительных материалов и конструкций, а именно к методике отбора образцов из конструкций, и методов разрушающего контроля физико-механических свойств бетона в конструкциях - прочности на сжатие, на растяжении при изгибе и при раскалывании. Метод может быть использован для контроля качества бетона в монолитном строительстве, а также при обследовании строительных бетонных и железобетонных конструкций и изделий.

Известен способ определения неоднородности прочности бетона по образцам, отобранным из конструкции по методике ГОСТ 28570 «Бетоны. Методы определения прочности по образцам отобранным из конструкции», включающий выбуривание из тела конструкции бетонного образца - цилиндра диаметром не менее 44 мм на сжатие, и не менее 70 мм на раскалывание, изготовление контрольных образцов с отношением высоты к диаметру (d) не менее 0,85*d, подготовку опорных поверхностей, удовлетворяющих требованиям отклонения от плоскостности торцевых поверхностей и прямолинейности образующих цилиндра, последующее выдерживание и испытание его на сжатие или растяжение при раскалывании по ГОСТ 10180. «Бетоны. Методы определения прочности по контрольным образцам».

Недостатками известных разрушающих методов определения прочности бетона является следующее:

- полученный при испытании результат характеризует усредненные свойства образца по его высоте, в то время, как изменения неоднородности свойств материала в конструкции распределяются по глубине сечения сравнимой с высотой одного образца (т.е. 40-50 мм);

- процедура отбора образцов для испытания традиционными стандартизированными методами требует больших трудозатрат на стадии отбора из конструкций за счет требуемых сравнительно больших минимальных диаметров, а также требует трудоемкой операции подготовки образцов к испытанию, чего не требуется в предлагаемом способе испытаний;

- в густоармированных конструкциях бывает затруднено выбурить керн диаметром не менее 3-х кратного размера крупного заполнителя, но не менее 40 мм, без ослабления арматурного каркаса конструкции, что приводит к повреждению железобетонной конструкции, снижению ее надежности. Чем больше диаметр керна, тем на большую глубину необходимо забуриваться для отбора одной серии образцов, обеспечивая при этом необходимое соотношение высоты к диаметру. В среднем это глубина составляет не менее 220 мм. Для некоторых особо ответственных конструкций создание такого «дефекта» в монолитном бетоне конструкции неприемлемо с точки зрения обеспеченности эксплуатационной надежности.

- для отбора одной серии образцов необходимо затратить работу на высверливание керна, равную истиранию определенного объема бетона, величину этого объема определяют по следующим параметрам: диаметр образца, глубина реза, толщина режущего сегмента. В нашем случае, с применением специального оборудования, работа на отбор кернов может быть снижена в 10 раз.

- при густом армировании уплотнение бетона внешних слоев конструкции отличается от уплотнения бетона по основному сечению конструкции. Поэтому, согласно правилам отбраковки по ГОСТ 28570, ослабленные внешние слои бетона конструкции не будут учтены при определении средней прочности в серии образцов. В предлагаемом способе оценки неоднородности свойств материала в конструкциях и изделиях получаемые результаты смогут отразить характер изменения прочности по глубине сечения и позволят принять обоснованное решение о необходимости дальнейшего детального определения свойств материала всей конструкции.

Техническая задача заключается в разработке новых методов контроля свойств бетона в конструкциях, позволяющих определять и учитывать в оценке эксплуатационной пригодности конструкций фактическую неоднородность в сечениях при одновременном снижении влияния возмущающих методических и метрологических факторов.

Поставленная задача решается таким образом, что в способе определения однородности бетона в сечении бетонных и железобетонных конструкций по отобранным контрольным образцам, включающем выбуривание из конструкции цилиндрического образца, последующее испытание его на раскалывание путем приложения разрушающей нагрузки к боковой поверхности образца до разрушения, расчет прочности и определение однородности бетона по прочности по длине образца, отличающийся тем, что определение прочности осуществляют методом пошагового раскалывания цилиндрического образца в диаметральной плоскости, перпендикулярно продольной оси цилиндра с шагом между зонами приложения нагрузки 12-17 мм, с возможностью определения прочности бетона в сечении конструкции послойно в плоскости, параллельной поверхности конструкции.

Предлагаемый способ отличается тем что, определение прочности осуществляют методом пошагового раскалывания цилиндрического образца в диаметральной плоскости, перпендикулярно продольной оси цилиндра с шагом между зонами приложения нагрузки 12-17 мм, с возможностью определения прочности бетона в сечении конструкции послойно в плоскости, параллельной поверхности конструкции с высокой дискретностью (шагом по глубине в одном образце-цилиндре около 12-17 мм) используя при испытаниях малогабаритные образцы-цилиндры диаметром около 20 мм.

Технический результат: определение неоднородности прочностных свойств бетона в конструкциях при снижении трудозатрат за счет упрощения отбора контрольных образцов, возможность использования предлагаемого метода в густоармированных и тонкослойных конструкциях, выявление степени и характера повреждений внешних слоев конструкций при агрессивных и экстремальных воздействиях (высокотемпературные воздействия, коррозия, циклическое замораживание и др.), снижение трудоемкости испытаний, исключение этапа подготовки образцов и уменьшение влияния «человеческого фактора» на результат испытаний.

Способ определения однородности бетона в конструкции осуществляют следующим образом.

Отбираются образцы с внешней поверхности конструкций и далее испытываются по предложенной новой методике определения прочностных свойств с малым шагом по глубине сечения (от 12-15 мм в каждом образце). Далее выполняется графический анализ и статистическая обработка полученных результатов. Оценивается их достоверность и статистическая однородность.

Проблема возможной высокой неоднородности получаемых данных, при данной схеме испытания, может быть решена путем увеличения контрольных образцов в серии, а так же статистической отбраковкой аномальных результатов с учетом сравнительно низкой трудоемкости отбора и испытаний образцов.

В таблице 1 приведены результаты испытаний на сжатие пластин и кернов из отобранного керна; таблице 2 - результаты испытаний на раскалывание по предложенному методу. образцов-кернов, Образцы отобраны из изделия плиты мощения трамвайных путей размерами (400×600×100 мм), изготовленной методом вибропрессования из мелкозернистого бетона класса В40. Далее из торцевой плоскости плиты были выбурены цилиндрические образцы диаметром 23,5 мм, в количестве 5 штук высотой 200-230 мм. После предварительного выдерживания (3 суток) образцы были испытаны по предложенной методике поперечного раскалывания. Далее были отобраны дополнительно 2 аналогичных предыдущим образца цилиндра на такую же глубину из той же грани плиты, разрезаны алмазным режущим инструментом на круглые пластины («пятаки» толщиной около 7-10 мм и цилиндры с h/d=1) и испытаны: пластины - на сжатие двусторонним соосным приложением нагрузки через штампы диаметром 8-10 мм; цилиндры - осевое сжатие.

На чертеже представлен график изменения зависимости прочности бетона нагретого сечения плиты (1200 град. на поверхности), прочность на раскалывание и на сжатие в пластинах (штамп двусторонний и цилиндры) в сечении дорожной плиты.

Представленные данные наглядно иллюстрируют повторяемость характера распределения прочностных характеристик по глубине сечения плиты в направлении отбора образцов.

Отмечена высокая степень повторяемости прочностных характеристик бетона в первых пяти образцах и высокая степень величины достоверности аппроксимации полученных точек степенными функциями 4 и 3 степени.

Выявленная неоднородность материала в сечении плиты может быть объяснена «пристенным» эффектом уплотнения в процессе вибропрессования изделия.

Как видно на расположенных ниже графиках испытания материала плиты методом штампа и методом раскалывания, выявленный характер распределения неоднородности прочности в сечении изделия - идентичен. Разница абсолютных значений прочностей в разных методах указывает на необходимость определения частных коэффициентов (зависимостей) перехода для разных видов (состав, прочность и т.п.) бетонов.

Предлагаемая методика контроля прочности позволяет:

- выполнять численную и сравнительную оценку изменения свойств материала по глубине сечения конструкций и изделий с высокой степенью дискретности (шаг по глубине сечения в каждом отобранном образце от 15 мм);

- Выполнять определение прочностных характеристик материала в густоармированных, тонкослойных и тонкостенных изделиях и конструкциях;

- Определять прочностные характеристики других строительных материалов и природных материалов (бут, гранит, керамические изделия и др.);

- Определять степень и глубину повреждения материалов бетонных и ж/б конструкций, а также ряда защитных покрытий, при аварийных и эксплуатационных агрессивных воздействиях;

- Дает возможность изучения свойств материалов при различных эксплуатационных режимах в научных и исследовательских работах.

Данный метод определения прочности бетона в образцах, отобранных из конструкций особенно актуален для высокопрочного бетона (классов В60 и выше) может быть рекомендован для широкого применения на объектах монолитного строительства и объектах проведения технического обследования, в т.ч. и после аварийных воздействий.

Похожие патенты RU2676853C1

название год авторы номер документа
Способ определения прочности бетона при раскалывании 2017
  • Анцибор Алексей Валерьевич
  • Бруссер Марк Израилевич
RU2679646C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ БЕТОНА ПРИ РАСКАЛЫВАНИИ 2012
  • Анцибор Алексей Валерьевич
  • Бруссер Марк Израилевич
RU2510001C1
Комплексный способ контроля напряженно-деформированного состояния элементов конструкций объектов геотехнологии в процессе их длительной эксплуатации 2022
  • Барышников Василий Дмитриевич
  • Хмелинин Алексей Павлович
  • Барышников Дмитрий Васильевич
RU2796197C1
Способ контроля прочности бетона 2023
  • Беленцов Юрий Алексеевич
  • Черепанова Дария Алексеевна
RU2815345C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ БЕТОНА МЕТОДОМ СКАЛЫВАНИЯ РЕБРА 2012
  • Губайдуллин Герман Асфович
  • Леонидов Сергей Михайлович
  • Новиков Евгений Иванович
  • Илькаев Евгений Викторович
RU2502976C1
СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ БЕТОНА МЕТОДОМ СКАЛЫВАНИЯ РЕБРА 2009
  • Губайдуллин Герман Асфович
  • Леонидов Сергей Михайлович
  • Новиков Евгений Иванович
  • Илькаев Евгений Викторович
RU2470284C2
СПОСОБ ОЦЕНКИ ПРОМЫШЛЕННОЙ БЕЗОПАСНОСТИ МОНОЛИТНОЙ ЖЕЛЕЗОБЕТОННОЙ ДЫМОВОЙ ТРУБЫ, ВОЗВОДИМОЙ С ИСПОЛЬЗОВАНИЕМ ПЕРЕСТАВНОЙ ОПАЛУБКИ 2003
  • Сатьянов В.Г.
  • Хапонен Н.А.
  • Пилипенко П.Б.
  • Французов В.А.
  • Сатьянов С.В.
RU2229002C1
СПОСОБ УЛЬТРАЗВУКОВОГО КОНТРОЛЯ ПРОЧНОСТИ БЕТОНА В КОНСТРУКЦИЯХ И СООРУЖЕНИЯХ В ПРОЦЕССЕ ЭКСПЛУАТАЦИИ 2004
  • Алимов А.Г.
  • Карпунин В.В.
RU2262692C1
СПОСОБ ИСПЫТАНИЯ НАБРЫЗГБЕТОННОЙ КРЕПИ 1991
  • Казакевич Эдуард Вениаминович[Ua]
  • Кривенко Татьяна Анатольевна[Ua]
RU2034154C1
СЕГМЕНТНЫЙ СПОСОБ ОПРЕДЕЛЕНИЯ ПРОЧНОСТИ ОГРАЖДАЮЩИХ КОНСТРУКЦИЙ 2016
  • Желдаков Дмитрий Юрьевич
  • Гагарин Владимир Геннадьевич
  • Иванова Татьяна Игоревна
  • Козлов Владимир Владимирович
  • Пастушков Павел Павлович
  • Иванов Сергей Юрьевич
RU2622007C1

Иллюстрации к изобретению RU 2 676 853 C1

Реферат патента 2019 года СПОСОБ ОПРЕДЕЛЕНИЯ ОДНОРОДНОСТИ БЕТОНА В СЕЧЕНИИ БЕТОННЫХ И ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ

Изобретение предназначено для определения неоднородности прочностных свойств бетона в конструкциях и снижения трудозатрат за счет упрощения отбора контрольных образцов, при возможности использования предлагаемого метода в густоармированных и тонкослойных конструкциях. Сущность: осуществляют выбуривание из конструкции цилиндрического образца, последующее испытание его на раскалывание путем приложения разрушающей нагрузки к боковой поверхности образца до разрушения, с последующим расчетом прочности и определением однородности прочности бетона по длине образца. Определение прочности осуществляют методом пошагового раскалывания цилиндрического образца в диаметральной плоскости, перпендикулярно продольной оси цилиндра с шагом между зонами приложения нагрузки 12-17 мм, с возможностью определения прочности бетона в сечении конструкции послойно в плоскости, параллельной поверхности конструкции. Технический результат: возможность определять и учитывать в оценке эксплуатационной пригодности конструкций фактическую неоднородность в сечениях при одновременном снижении влияния возмущающих методических и метрологических факторов. 1 ил., 2 табл.

Формула изобретения RU 2 676 853 C1

Способ определения однородности бетона в сечении бетонных и железобетонных конструкций по отобранным контрольным образцам, включающий выбуривание из конструкции цилиндрического образца, последующее испытание его на раскалывание путем приложения разрушающей нагрузки к боковой поверхности образца до разрушения, с последующим расчетом прочности и определением однородности прочности бетона по длине образца, отличающийся тем, что определение прочности осуществляют методом пошагового раскалывания цилиндрического образца в диаметральной плоскости, перпендикулярно продольной оси цилиндра с шагом между зонами приложения нагрузки 12-17 мм, с возможностью определения прочности бетона в сечении конструкции послойно в плоскости, параллельной поверхности конструкции.

Документы, цитированные в отчете о поиске Патент 2019 года RU2676853C1

СПОСОБ КОНТРОЛЯ ИНТЕГРАЛЬНЫХ ПАРАМЕТРОВ КАЧЕСТВА ЖЕЛЕЗОБЕТОННЫХ КОНСТРУКЦИЙ В ВИДЕ ПЛОСКИХ И РЕБРИСТЫХ БАЛОЧНЫХ ПЛИТ 1999
  • Коробко В.И.
  • Павленко А.А.
  • Юров А.П.
RU2162218C1
Способ испытания бетонного образца 1983
  • Павлов Леонид Сергеевич
  • Синяков Василий Константинович
  • Мочалов Евгений Борисович
  • Усколовский Александр Львович
SU1125503A1
Механизм привода машины для испытания материалов на прочность 1948
  • Домбровский Г.Ф.
SU81330A1
CN 101936867 A, 05.01.2011.

RU 2 676 853 C1

Авторы

Анцибор Алексей Валерьевич

Бруссер Марк Израилевич

Даты

2019-01-11Публикация

2017-12-28Подача