Изобретение относится к области упрочняюще-чистовой обработки стальных деталей и может быть использовано в различных областях машиностроения для защиты и упрочнения поверхностей стальных деталей с целью снижения остаточной пористости, шероховатости и повышения прочности (когезии) порошкового металлического покрытия, нанесенного плазменным напылением, а также прочности сцепления (адгезии) на границе порошковое металлическое покрытие - основной металл.
Известен способ деформационного упрочнения изделий с покрытиями, полученными наплавкой [Влияние последующей деформационной обработки на перераспределение напряжений в наплавленных валах. / В.И. Махненко и др. Автоматическая сварка, 2001, №7, с. 3-6]. Причинами, препятствующими достижению требуемого технического результата: снижения шероховатости, остаточной пористости плазменного покрытия и повышения когезионной, адгезионной прочности, являются невозможность существенного увеличения плотности покрытий, полученных из порошковых компонентов вследствие затруднения пластической деформации и невозможность повышения адгезии на границе раздела покрытия с основным металлом.
Известен способ комбинированного упрочнения поверхностей деталей, заключающийся в одновременном напылении плазменного покрытия и его электромеханической обработке с одновременным охлаждением струей воды высокого давления. (патент РФ №2480533, кл. С23С 4/18, В24В 39/06, В23Н 9/00). Недостатком способа является ограниченная производительность процесса и низкая когезионная прочность между слоями покрытия.
Наиболее близким по технической сущности является способ комбинированного упрочнения поверхностей деталей (патент РФ №2338005, кл. С23С 4/18, В23Н 9/00), при котором на поверхность изделия плазменным напылением наносят покрытие, а затем покрытие подвергают пластическому деформированию с одновременным пропусканием электрического тока через зону контакта инструмента с покрытием.
Указанный в прототипе способ упрочнения позволяет его использовать для ограниченных по величине толщин покрытий порядка 0,1-0,5 мм, при превышении которых покрытие из-за высоких остаточных напряжений может растрескиваться и отслаиваться. Также деформация покрытия одним инструментом приводит к выдавливанию материала покрытия из под ролика в процессе его нагрева на температуру 900-1200°С, что приводит к формированию характерного макрорельефа, т.е. требуется последующая чистовая обработка для получения покрытия с низкой шероховатостью.
Задачей изобретения является: новый способ, обеспечивающий снижения остаточной пористости, шероховатости и повышения прочности (когезии) порошкового металлического покрытия, нанесенного плазменным напылением, а также прочности сцепления (адгезии) на границе порошковое металлическое покрытие - основной металл путем его дополнительного нагрева и пластического деформирования тремя инструментами с пропусканием электрического тока.
Технический результат: 1) снижение остаточной пористости плазменного металлического покрытия; 2) снижение шероховатости; 3) повышение микротвердости, когезионной, адгезионной прочности плазменного металлического покрытия на 100-300%. Технический результат достигается тем, что способ упрочнения поверхности стальной детали, включающий нанесение плазменным напылением на деталь порошкового металлического покрытия и последующее его пластическое деформирование инструментом совместно с пропусканием электрического тока, заключается в том, что перед пластическим деформированием деталь с плазменным металлическим покрытием нагревают до температуры 100-600°С, а пластическое деформирование осуществляют последовательно тремя инструментами, установленными в одной плоскости, через которые пропускается электрический ток, при этом ширина контактной поверхности инструментов определяется из условия: в1=(1÷2)⋅в2=(2÷5)⋅в3, где в1, в2, в3 - ширина контактной поверхности инструмента, через который осуществляется электроконтактный нагрев.
Получаемый технический результат можно объяснить тем, что вследствие деформирования и нагрева порошкового металлического покрытия происходит заполнение пор, сварка по границам частиц в порошковом металлическом покрытии, сварка на границе покрытия с основным металлом, выглаживание шероховатости поверхности плазменного покрытия. Дополнительный нагрев плазменного покрытия до температуры 100-600°С повышает пластичность плазменного покрытия и снижает вероятность формирования холодных трещин в процессе электромеханической обработки. Нижний интервал 100°С температурного диапазона обоснован необходимостью повышения пластичности обрабатываемого материала для снижения вероятности образования холодных трещин при пластическом деформировании инструментом с пропусканием электрического тока, а верхний интервал температур 600°С ограничивается началом окисления материала покрытия. В сравнении с прототипом применение дополнительного нагрева на 100-600°С позволяет обрабатывать хрупкие покрытия, т.е. снизить вероятность образования холодных трещин, и, как следствие, разрушение покрытия при обработке. Использование трех инструментов, через которые пропускается электрический ток, повышает стабильность электроконтактного нагрева, а также снижает остаточную пористость в металлическом покрытии и повышает качество сварки напыленных частиц в плазменном покрытии и плазменного покрытия с основным металлом. Величина пропускаемого через инструменты электрического тока выбирается из условия нагрева поверхности плазменного покрытия в зоне контакта с первым инструментом до температуры 600-700°С, со вторым инструментом до температуры 900-1000°С, а с третьим инструментом до температуры 1000-1200°С. Большая ширина первого инструмента, через который пропускается электрический ток в сравнении с вторым и третьим инструментом, позволяет осуществлять нагрев большей площади поверхности плазменного покрытия до температуры 600-700°С, что позволяет только снизить шероховатость поверхности для обеспечения контакта второго и третьего инструмента с поверхностью плазменного покрытия. Применение второго и третьего инструмента необходимо для электроконтактного нагрева плазменного покрытия до температуры 900-1200°С, второй инструмент имея большую ширину, чем третий обеспечивает нагрев до температуры 900-1000°С, а третий инструмент позволяет нагревать плазменное покрытие до температуры 1000-1200°С. При этом величина деформирующего усилия каждого инструмента определяется по формуле как в изобретении прототипе. Вследствие высокой температуры нагрева под вторым и третьим инструментом, а также пластического деформирования плазменного покрытия, обеспечивается условие повышения прочности (когезии) плазменного покрытия, а также прочности сцепления (адгезии) на границе плазменное покрытие - основной металл.
Пример 1.
В процессе нанесения защитного покрытие на цилиндрическое изделие из стали Ст.3 сформировали покрытие в три стадии. На первой стадии плазменным напылением порошка хром-марганцевой стали сформировали покрытие толщиной 800 мкм с шероховатостью Rz 50. На второй стадии деталь с покрытием нагревается на температуру 100°С. На третьей стадии осуществляется деформация покрытия тремя инструментами, с пропусканием электрического тока и шириной первого, второго и третьего инструментов соответственно 4, 2, 1 мм. Шероховатость покрытия снижается до величины Ra 1,25. Пористость снижается с 10% до 2%. Микротвердость повышается с 2700 МПа до 5800 МПа. Когезионная прочность повышается с 110 МПа до 310 МПа.
Пример 2.
В процессе нанесения защитного покрытие на цилиндрическое изделие из стали Ст.3 сформировали покрытие в три стадии. На первой стадии плазменным напылением порошка никелевого сплава сформировали покрытие толщиной 900 мкм с шероховатостью Rz 50. На второй стадии деталь с покрытием нагревается на температуру 500°С. На третьей стадии осуществляется деформация покрытия тремя инструментами, с пропусканием электрического тока и шириной первого, второго и третьего инструментов соответственно 4, 2, 1 мм. Шероховатость покрытия снижается до величины Ra 0,63. Пористость снижается с 8% до 2%. Микротвердость повышается с 3500 МПа до 7000 МПа. Когезионная прочность повышается с 100 МПа до 300 МПа, адгезионная прочность повышается с 70 до 210 МПа.
Пример 3.
В процессе нанесения защитного покрытие на цилиндрическое изделие из стали Ст.3 сформировали покрытие в три стадии. На первой стадии плазменным напылением порошка высокохромистого чугуна сформировали покрытие толщиной 800 мкм с шероховатостью Rz 50. На второй стадии деталь с покрытием нагревается на температуру 600°С. На третьей стадии осуществляется деформация покрытия тремя инструментами, с пропусканием электрического тока и шириной первого, второго и третьего инструментов соответственно 4, 2, 1 мм. Шероховатость покрытия снижается до величины Ra 0,63. Пористость снижается с 10% до 2%. Микротвердость повышается с 4000 МПа до 10000 МПа. Адгезионная прочность повышается с 50 до 110 МПа.
По предлагаемому способу упрочнения стальной детали получено снижение шероховатости поверхности плазменного покрытия, остаточной пористости и повышение микротвердости, когезионной, адгезионной прочности на 100-300%.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ КОМБИНИРОВАННОГО УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ | 2006 |
|
RU2338005C2 |
СПОСОБ КОМБИНИРОВАННОГО УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ | 2011 |
|
RU2480533C1 |
Способ формирования металлооксидных пористых покрытий на титановых изделиях | 2022 |
|
RU2781873C1 |
Способ электроискрового легирования лопаток из титановых сплавов паровых турбин ТЭЦ и АЭС | 2020 |
|
RU2744005C1 |
Способ создания деталей аддитивно-субтрактивно-упрочняющей технологией | 2020 |
|
RU2760020C1 |
Способ получения функционально-градиентных покрытий на металлических изделиях | 2021 |
|
RU2763698C1 |
СПОСОБ ПОЛУЧЕНИЯ ПОДШИПНИКА СКОЛЬЖЕНИЯ | 2013 |
|
RU2539515C2 |
Способ получения слоистого композитного покрытия | 2017 |
|
RU2671032C1 |
СПОСОБ ПОДГОТОВКИ ПОВЕРХНОСТИ ДЛЯ ПЛАЗМЕННОГО ПОКРЫТИЯ | 1998 |
|
RU2132402C1 |
Способ упрочнения цилиндрического изделия с покрытием поверхностно-пластическим деформированием | 2021 |
|
RU2765559C1 |
Изобретение относится к области упрочняюще-чистовой обработки деталей и может быть использовано в различных областях машиностроения для защиты и упрочнения поверхностей деталей с целью снижения шероховатости, повышения плотности. Способ упрочнения поверхности стальной детали включает нанесение плазменным напылением на деталь порошкового металлического покрытия и последующее его пластическое деформирование инструментом совместно с пропусканием электрического тока, при этом перед пластическим деформированием деталь с плазменным металлическим покрытием нагревают до температуры 100-600°С, а пластическое деформирование осуществляют последовательно тремя инструментами, установленными в одной плоскости, через которые пропускается электрический ток, при этом ширина контактной поверхности инструментов определяется из условия: в1=(1÷2)⋅в2=(2÷5)⋅в3, где в1, в2, в3 - ширина контактной поверхности инструмента, через который осуществляется электроконтактный нагрев. Техническим результатом изобретения является снижение остаточной пористости плазменного покрытия и его шероховатости, повышение когезионной, адгезионной прочности и микротвердости. 3 пр.
Способ упрочнения поверхности стальной детали, включающий нанесение плазменным напылением на деталь порошкового металлического покрытия и последующее его пластическое деформирование инструментом совместно с пропусканием электрического тока, отличающийся тем, что перед пластическим деформированием деталь с плазменным металлическим покрытием нагревают до температуры 100-600°С, а пластическое деформирование осуществляют последовательно тремя инструментами, установленными в одной плоскости, через которые пропускается электрический ток, при этом ширина контактной поверхности инструментов определяется из условия: в1=(1÷2)⋅в2=(2÷5)⋅в3, где в1, в2, в3 - ширина контактной поверхности инструмента, через который осуществляется электроконтактный нагрев.
СПОСОБ КОМБИНИРОВАННОГО УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ | 2006 |
|
RU2338005C2 |
CN 101994079 A, 30.03.2011 | |||
СПОСОБ КОМБИНИРОВАННОГО УПРОЧНЕНИЯ ПОВЕРХНОСТЕЙ ДЕТАЛЕЙ | 2011 |
|
RU2480533C1 |
US 9663870 B2, 30.05.2017 | |||
US 5298095 A1, 29.03.1994. |
Авторы
Даты
2019-01-22—Публикация
2017-11-03—Подача