СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ Российский патент 2019 года по МПК G01N29/04 

Описание патента на изобретение RU2679647C1

Изобретение относится к области анализа с помощью ультразвуковых волн материалов или изделий из металлов, керамики, пластмасс и может быть использовано в промышленности для контроля дефектов внутри деталей, для дефектоскопии различных материалов, а также в медицине для диагностики внутренних органов.

Известен способ ультразвуковой томографии, [RU 2532597 С1, МПК G01N 29/04 (2006.01), опубл. 10.11.2014], выбранный в качестве прототипа, включающий размещение пьезопреобразователей антенной решетки на объекте контроля, причем расстояние между соседними положениями антенной решетки, при которой получают одно В-изображение, превышает половину длины ультразвуковой волны, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, преобразование в цифровые коды полученных электрических сигналов, их сохранение, обработку цифровых кодов, реконструкцию изображения и его визуализацию путем объединения послойно нескольких В-изображений. После преобразования принятых ультразвуковых волн в электрические сигналы осуществляют их усиление и преобразование в цифровые коды, проводят когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента. Сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки, затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации

Недостатком этого способа является невозможность проведения контроля в реальном масштабе времени вследствие реализации алгоритма реконструкции изображения на персональном компьютере, что требует передачи большого массива сохраненных реализаций УЗ колебаний от блока памяти в персональный компьютер.

Техническая проблема, решаемая при использовании предложенного изобретения заключается в уменьшении объема передаваемых данных без потери информации и за счет этого проведение контроля в реальном масштабе времени.

Предложенный способ ультразвуковой томографии, так же как в прототипе, включает размещение пьезопреобразователей антенной решетки на объекте контроля, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, усиление и преобразование в цифровые коды полученных электрических сигналов, их сохранение, когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента, сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки, затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации.

Согласно изобретению после преобразования ультразвуковых волн в электрические сигналы всеми преобразователями антенной решетки и их усиления, определяют скорость изменения каждого электрического сигнала, которую используют для вычисления периода преобразования полученных электрических сигналов в цифровые коды.

За счет определения скорости изменения каждого электрического сигнала, из которой вычисляют текущий период преобразования полученных электрических сигналов в цифровые коды появляется возможность уменьшения объема передаваемых данных без потери информации и за счет этого проведение контроля в реальном масштабе времени.

На фиг. 1 представлено устройство, реализующее предлагаемый способ.

Предложенный способ ультразвуковой томографии осуществлен с помощью устройства, содержащего микроконтроллер 1 (фиг. 1), к которому последовательно подключены многоканальный генератор 2, антенная решетка 3, многоканальный усилитель 4, многоканальный аналого-цифровой преобразователь 5, многоканальный блок вычисления скорости изменения ультразвукового сигнала 6 (БВС), выход которого подключен к многоканальному генератору управляемому напряжением 7 (ГУН). Выход многоканального генератора управляемого напряжением 7 (ГУН) подключен к тактовому входу многоканального аналого-цифрового преобразователя 5, выход которого связан с входом данных оперативного запоминающего устройства 8 (ОЗУ), а выход данных которого соединен с микроконтроллером 1, который подключен к персональному компьютеру 9.

Микроконтроллер 1 может быть выбран любым, например ATMEGA64, фирмы ATMEL. Многоканальный генератор 2 может быть выполнен на микросхемах, имеющих импульсный ток коллектора не менее 2А и выходное напряжение 90 В, например, STHV748. Антенная решетка 3 является набором 16 или более пьезопреобразователей, располагаемых линейно или матрично, например, OLYMPUS 2L16-A1. Многоканальный усилитель 4 с многоканальным аналого-цифровым преобразователем 5 выполнен по типовой схеме, например, на микросхемах AD9272. Многоканальный блок вычисления скорости изменения каждого ультразвукового сигнала 6 (БВС) может быть выполнен на типовых операционных усилителях, работающих в режиме дифференцирования входного сигнала. Многоканальный генератор, управляемый напряжением 7 (ГУН) может быть выполнен на микросхеме NE555. Оперативное запоминающее устройство 8 (ОЗУ), объемом не менее 64 Кб, выполнено на микросхемах IDT72V293. Персональный компьютер может быть любым, например, Acer "Revo RL70".

При контроле фасонной отливки на ее поверхности размещали антенную решетку 3, содержащую 16 пьезопреобразователей, расположенных линейно. После выдачи разрешения микроконтроллера 1 на работу многоканального генератора 2, многоканальный генератор 2 поочередно формировал импульсы возбуждения для каждого пьезопреобразователя антенной решетки 3. Пьезопреобразователи антенной решетки 3 поочередно излучали ультразвуковые волны в контролируемое изделие, а прием ультразвуковых волн и их преобразование в электрические сигналы осуществляли одновременно всеми преобразователями антенной решетки 3, причем поочередное излучение осуществлялось циклически. Полученные электрические сигналы усиливали многоканальным усилителем 4, преобразовывали в цифровые коды в многоканальном аналого-цифровом преобразователе 5 и сохраняли в оперативном запоминающем устройстве 8 (ОЗУ). Тактовую частоту преобразования входных данных многоканального аналого-цифрового преобразователя 5 определяли многоканальным генератором, управляемым напряжением 7, входная информация для которого поступала с выхода многоканального усилителя 4 через многоканальный блок вычисления скорости изменения ультразвукового сигнала 6. Данные из оперативного запоминающего устройства 8 (ОЗУ) через микроконтроллер 1 передавали в персональный компьютер 9. Реконструкцию внутренней структуры контролируемого изделия и его визуализацию осуществляли в персональном компьютере 9 путем когерентной обработки полученных данных, которая заключалась в следующем: разбивали зону контроля на локальные области, которые рассматривали в качестве локального сосредоточенного отражающего элемента (50000 при следующих размерах зоны контроля: длина - 10 мм, глубина - 50 мм, размер локальной области 0,1 мм), и сохраненные цифровые коды сдвигали назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области зоны контроля до соответствующего пьезопреобразователя антенной решетки 3. Затем перемножали сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняли полученные произведения цифровых кодов и использовали их для реконструкции изображения и его визуализации.

В способе-прототипе от антенной решетки получили 256 А-сканов, объем каждого А-скана составил 4 Кб. Суммарный объем передаваемых данных составил 265×4 Кб=1 Мб, при частоте преобразования электрических сигналов в цифровые коды 40 МГц, скорости распространения ультразвука в стали 6000 м\с. В предлагаемом способе объем каждого А-скана составил 1,2 Кб, общий объем передаваемых данных составил 256×1,2 Кб=367,2 Кб.

Сравнение результатов ультразвуковой дефектоскопии зоны контроля фасонной отливки, полученных с использованием способа-прототипа и предлагаемого способа показывают, что при использовании заявляемого способа для ультразвуковой томографии объем данных уменьшился в 3 раза.

Похожие патенты RU2679647C1

название год авторы номер документа
СПОСОБ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ТРЕХМЕРНОГО ИЗДЕЛИЯ 2013
  • Солдатов Алексей Иванович
  • Квасников Константин Григорьевич
  • Солдатов Андрей Алексеевич
  • Селезнев Антон Иванович
RU2532597C1
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2018
  • Солдатов Алексей Иванович
  • Солдатов Андрей Алексеевич
  • Кожемяк Олеся Анатольевна
  • Шульгина Юлия Викторовна
  • Костина Мария Алексеевна
  • Сорокин Павел Владимирович
  • Квасников Константин Григорьевич
RU2679648C1
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2018
  • Солдатов Алексей Иванович
  • Солдатов Андрей Алексеевич
  • Шульгин Евгений Михайлович
  • Шульгина Юлия Викторовна
RU2675214C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2018
  • Солдатов Алексей Иванович
  • Солдатов Андрей Алексеевич
  • Шульгин Евгений Михайлович
  • Шульгина Юлия Викторовна
RU2675217C1
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2013
  • Солдатов Алексей Иванович
  • Квасников Константин Григорьевич
  • Солдатов Андрей Алексеевич
  • Селезнев Антон Иванович
  • Болотина Ирина Олеговна
  • Сорокин Павел Владимирович
  • Макаров Виктор Степанович
RU2532606C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2023
  • Солдатов Алексей Иванович
  • Костина Мария Алексеевна
  • Солдатов Андрей Алексеевич
  • Седнев Дмитрий Андреевич
RU2817123C1
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2023
  • Солдатов Алексей Иванович
  • Седнев Дмитрий Андреевич
  • Костина Мария Алексеевна
  • Солдатов Андрей Алексеевич
  • Квасников Константин Григорьевич
  • Конева Дарья Андреевна
RU2799111C1
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2023
  • Солдатов Алексей Иванович
  • Солдатов Андрей Алексеевич
  • Седнев Дмитрий Андреевич
RU2815491C1
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ 2023
  • Солдатов Алексей Иванович
  • Седнев Дмитрий Андреевич
  • Костина Мария Алексеевна
  • Солдатов Андрей Алексеевич
  • Квасников Константин Григорьевич
  • Долматов Дмитрий Олегович
  • Конева Дарья Андреевна
RU2796813C1
УЛЬТРАЗВУКОВОЙ ТОМОГРАФ И КОЛЬЦЕВАЯ АНТЕННАЯ РЕШЕТКА ДЛЯ УЛЬТРАЗВУКОВОГО ТОМОГРАФА 1999
  • Пархоменко П.П.
  • Каравай М.Ф.
  • Сухов Е.Г.
  • Фалеев Б.А.
  • Дмитриев О.В.
  • Дроздов С.А.
  • Комаров О.В.
  • Бабин Л.В.
  • Попов А.С.
  • Буров В.А.
  • Раттэль М.И.
  • Бобов К.Н.
  • Конюшкин А.Л.
  • Румянцева О.Д.
RU2145797C1

Иллюстрации к изобретению RU 2 679 647 C1

Реферат патента 2019 года СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ

Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что осуществляют размещение пьезопреобразователей антенной решетки на объекте контроля, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, усиление и преобразование в цифровые коды полученных электрических сигналов, их сохранение, когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента, сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки, затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации, при этом после преобразования ультразвуковых волн в электрические сигналы всеми преобразователями антенной решетки и их усиления определяют скорость изменения каждого электрического сигнала, которую используют для вычисления периода преобразования полученных электрических сигналов в цифровые коды. Технический результат: обеспечение возможности уменьшения объема данных без потери качества изображения и обеспечение возможности работы в режиме реального времени. 1 ил.

Формула изобретения RU 2 679 647 C1

Способ ультразвуковой томографии, включающий размещение пьезопреобразователей антенной решетки на объекте контроля, циклическое ультразвуковое облучение объекта контроля поочередно каждым пьезопреобразователем антенной решетки и одновременный прием ультразвуковых волн и их преобразование в электрические сигналы всеми преобразователями антенной решетки, усиление и преобразование в цифровые коды полученных электрических сигналов, их сохранение, когерентную обработку сохраненных цифровых кодов, при которой разбивают объект контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента, сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области до соответствующего пьезопреобразователя антенной решетки, затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации, отличающийся тем, что после преобразования ультразвуковых волн в электрические сигналы всеми преобразователями антенной решетки и их усиления определяют скорость изменения каждого электрического сигнала, которую используют для вычисления периода преобразования полученных электрических сигналов в цифровые коды.

Документы, цитированные в отчете о поиске Патент 2019 года RU2679647C1

СПОСОБ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ТРЕХМЕРНОГО ИЗДЕЛИЯ 2013
  • Солдатов Алексей Иванович
  • Квасников Константин Григорьевич
  • Солдатов Андрей Алексеевич
  • Селезнев Антон Иванович
RU2532597C1
RU 2008120366 A, 10.12.2009
Способ ультразвукового томографического контроля изделий 1990
  • Осетров Александр Владимирович
  • Туржанский Антон Анатольевич
SU1817019A1
Способ томографической реконструкции акустических неоднородностей 1989
  • Буров Валентин Андреевич
  • Глазков Александр Викторович
  • Рычагов Михаил Николаевич
  • Тагунов Евгений Яковлевич
SU1746219A1
JP 2009153573 A, 16.07.2009
US 2005054924 A1, 10.03.2005.

RU 2 679 647 C1

Авторы

Солдатов Алексей Иванович

Солдатов Андрей Алексеевич

Кожемяк Олеся Анатольевна

Шульгина Юлия Викторовна

Костина Мария Алексеевна

Сорокин Павел Владимирович

Квасников Константин Григорьевич

Даты

2019-02-12Публикация

2018-05-31Подача