Изобретение относится к области анализа с помощью ультразвуковых волн материалов или изделий из металлов, керамики, пластмасс и может быть использовано в промышленности для контроля дефектов внутри деталей, для дефектоскопии различных материалов, а также в медицине для диагностики внутренних органов.
Известно устройство ультразвуковой томографии [RU 2532597 С1, МПК G01N 29/04 (2006.01), опубл. 10.11.2014], выбранное в качестве прототипа, содержащее персональный компьютер, соединенный с микроконтроллером, который связан с блоком управления, подключенным к первому оперативному запоминающему устройству. Блок индикации соединен с микроконтроллером. Последовательно соединены многоканальный генератор, антенная решетка, многоканальный усилитель, многоканальный аналого-цифровой преобразователь, первое оперативное запоминающее устройство, блок умножения, второе оперативное запоминающее устройство и микроконтроллер, который связан с многоканальным генератором и многоканальным усилителем.
Недостатком этого устройства является невозможность проведения контроля в реальном масштабе времени вследствие реализации алгоритма реконструкции изображения на персональном компьютере, что требует передачи большого массива сохраненных реализаций ультразвуковых колебаний от оперативного запоминающего устройства через микроконтроллер в персональный компьютер.
Техническая проблема, решаемая при использовании предложенного изобретения, заключается в уменьшении объема передаваемых данных без потери информации и за счет этого проведение контроля в реальном масштабе времени.
Устройство ультразвуковой томографии, также как в прототипе, содержит персональный компьютер, соединенный с микроконтроллером, к которому последовательно подключены многоканальный генератор, антенная решетка, многоканальный усилитель, многоканальный аналого-цифровой преобразователь, оперативное запоминающее устройство.
Согласно изобретению устройство дополнительно содержит многоканальный блок вычисления скорости изменения каждого ультразвукового сигнала, подключенный к выходу многоканального усилителя и к входу многоканального генератора управляемого напряжением, который связан с тактовым входом многоканального аналого-цифрового преобразователя.
Предложенное использование многоканального блока вычисления скорости изменения каждого ультразвукового сигнала и многоканального генератора управляемого напряжением позволяет произвести оптимальную выборку ультразвукового сигнала и тем самым уменьшить объем передаваемых данных без потери информации и за счет этого вести контроль в реальном масштабе времени.
На фиг. 1 представлена схема устройства ультразвуковой томографии.
Устройство ультразвуковой томографии содержит микроконтроллер 1, к которому последовательно подключены многоканальный генератор 2, антенная решетка 3, многоканальный усилитель 4, многоканальный аналого-цифровой преобразователь 5, оперативное запоминающее устройство 6 (ОЗУ), которое соединено с микроконтроллером 1, который подключен к персональному компьютеру 7. Многоканальный блок вычисления скорости изменения каждого ультразвукового сигнала 8 (БВС), связан с выходом многоканального усилителя 4 и входом многоканального генератора управляемого напряжением 9 (ГУН), выход которого подключен к тактовому входу многоканального аналого-цифрового преобразователя 5.
Микроконтроллер 1 может быть выбран любым, например, ATMEGA64 фирмы ATMEL. Многоканальный генератор 2 может быть выполнен на микросхемах, имеющих импульсный ток коллектора не менее 2А и выходное напряжение 90В, например, STHV748. Антенная решетка 3 является набором 16 или более пьезопреобразователей, располагаемых линейно или матрично, например, OLYMPUS 2L16-A1. Многоканальный усилитель 4 с многоканальным аналого-цифровым преобразователем 5 выполнен по типовой схеме, например, на микросхемах AD9272. Многоканальный блок вычисления скорости изменения каждого ультразвукового сигнала 8 (БВС) может быть выполнен на типовых операционных усилителях, работающих в режиме дифференцирования входного сигнала. Многоканальный генератор управляемый напряжением 9 (ГУН) может быть выполнен на микросхемах NE555. Оперативное запоминающее устройство 6 (ОЗУ), объемом не менее 64 Кб, выполнено на микросхемах IDT72V293. Персональный компьютер 7 может быть любым, например, Acer "Revo RL70".
При томографии контролируемого изделия, например, фасонной отливки, на ее поверхности размещают антенную решетку 3, содержащую, например, 16 пьезопреобразователей, расположенных линейно. После выдачи разрешения микроконтроллера 1 на работу многоканального генератора 2, многоканальный генератор 2 поочередно формирует импульсы возбуждения для каждого пьезопреобразователя антенной решетки 3. Пьезопреобразователи антенной решетки 3 поочередно излучают ультразвуковые волны в контролируемое изделие, а прием ультразвуковых волн и их преобразование в электрические сигналы осуществляют одновременно всеми преобразователями антенной решетки 3, причем поочередное излучение осуществляется циклически. Полученные электрические сигналы усиливают многоканальным усилителем 4, преобразуют в цифровые коды в многоканальном аналого-цифровом преобразователе 5 и сохраняют в оперативном запоминающем устройстве 6 (ОЗУ). Тактовую частоту преобразования входных данных многоканального аналого-цифрового преобразователя 5 определяют многоканальным генератором управляемым напряжением 9, входная информация для которого поступает с выхода многоканального усилителя 4 через многоканальный блок вычисления скорости изменения каждого ультразвукового сигнала 8 (БВС). Данные из оперативного запоминающего устройства 6 (ОЗУ) через микроконтроллер 1 передают в персональный компьютер 7. Реконструкцию внутренней структуры контролируемого изделия и его визуализацию осуществляют в персональном компьютере 7 путем когерентной обработки полученных данных, которая заключается в следующем: разбивают зону контроля на локальные области, которые рассматривают в качестве локального сосредоточенного отражающего элемента (50000 при следующих размерах зоны контроля: длина - 10 мм, глубина - 50 мм, размер локальной области 0,1 мм), и сохраненные цифровые коды сдвигают назад во времени на величину, равную времени распространения отраженной волны от рассматриваемой локальной области зоны контроля до соответствующего пьезопреобразователя антенной решетки 3. Затем перемножают сдвинутые во времени цифровые коды соответственно для каждой из локальных областей, сохраняют полученные произведения цифровых кодов и используют их для реконструкции изображения и его визуализации.
В устройстве-прототипе от антенной решетки получили 256 А-сканов, объем каждого А-скана составил 4 Кб. Суммарный объем передаваемых данных составил 256×4 Кб=1 Мб, при частоте преобразования электрических сигналов в цифровые коды 40 МГц и скорости распространения ультразвука в стали 6000 м/с.В предлагаемом устройстве объем каждого А-скана составляет 1,2 Кб, а общий объем передаваемых данных составляет 256×1,2 Кб=367,2 Кб.
Сравнение результатов ультразвуковой томографии зоны контроля фасонной отливки, полученных с использованием устройства-прототипа и предлагаемого устройства показывают, что при использовании предложенного устройства ультразвуковой томографии объем данных уменьшился в 3 раза.
название | год | авторы | номер документа |
---|---|---|---|
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ | 2018 |
|
RU2679647C1 |
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ | 2018 |
|
RU2675217C1 |
СПОСОБ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ТРЕХМЕРНОГО ИЗДЕЛИЯ | 2013 |
|
RU2532597C1 |
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ | 2018 |
|
RU2675214C1 |
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ | 2013 |
|
RU2532606C1 |
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ | 2023 |
|
RU2815491C1 |
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ | 2023 |
|
RU2817123C1 |
УСТРОЙСТВО УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ | 2023 |
|
RU2796813C1 |
СПОСОБ УЛЬТРАЗВУКОВОЙ ТОМОГРАФИИ | 2023 |
|
RU2799111C1 |
Роботизированная система ультразвукового томографического обследования | 2019 |
|
RU2717220C1 |
Использование: для ультразвуковой томографии. Сущность изобретения заключается в том, что устройство ультразвуковой томографии содержит персональный компьютер, соединенный с микроконтроллером, к которому последовательно подключены многоканальный генератор, антенная решетка, многоканальный усилитель, многоканальный аналого-цифровой преобразователь, оперативное запоминающее устройство, при этом устройство дополнительно содержит многоканальный блок вычисления скорости изменения каждого ультразвукового сигнала, подключенный к выходу многоканального усилителя и к входу многоканального генератора, управляемого напряжением, который связан с тактовым входом многоканального аналого-цифрового преобразователя. Технический результат: обеспечение возможности уменьшения объема передаваемых данных без потери информации и за счет этого обеспечение возможности проведения контроля в реальном масштабе времени. 1 ил.
Устройство ультразвуковой томографии, содержащее персональный компьютер, соединенный с микроконтроллером, к которому последовательно подключены многоканальный генератор, антенная решетка, многоканальный усилитель, многоканальный аналого-цифровой преобразователь, оперативное запоминающее устройство, отличающееся тем, что дополнительно содержит многоканальный блок вычисления скорости изменения каждого ультразвукового сигнала, подключенный к выходу многоканального усилителя и к входу многоканального генератора, управляемого напряжением, который связан с тактовым входом многоканального аналого-цифрового преобразователя.
СПОСОБ ВИЗУАЛИЗАЦИИ УЛЬТРАЗВУКОВОЙ ДЕФЕКТОСКОПИИ ТРЕХМЕРНОГО ИЗДЕЛИЯ | 2013 |
|
RU2532597C1 |
RU 2008120366 A, 10.12.2009 | |||
Способ ультразвукового томографического контроля изделий | 1990 |
|
SU1817019A1 |
Способ томографической реконструкции акустических неоднородностей | 1989 |
|
SU1746219A1 |
JP 2009153573 A, 16.07.2009 | |||
US 2005054924 A1, 10.03.2005. |
Авторы
Даты
2019-02-12—Публикация
2018-05-31—Подача