СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ДВИЖУЩЕГОСЯ ВОЗДУШНОГО ОБЪЕКТА МЕТОДОМ ПАССИВНОЙ ЛОКАЦИИ Российский патент 2019 года по МПК G01S17/06 G01S17/46 G01C3/08 

Описание патента на изобретение RU2680265C2

Изобретение относится к способам определения дальности до движущего воздушного объекта, например, самолета, пассивной оптической локацией, а именно к способам определения дальности по измерению характеристик изображений.

Известен способ лазерной локации RU 2456637, опубл. 20 07 2012. Технический результат достигается тем, что в способе лазерной локации, включающем сканирование пространства последовательностью лазерных сигналов, генерируемых лазерным локатором, регистрацию рассеянных и/или отраженных объектом лазерных сигналов, определения расстояния до объекта по времени задержки между излученными и принятыми сигналами, а углового положения объекта - по направлению соответствующего излученного сигнала, в качестве генерируемого лазерным локатором сигнала используют цуг, по меньшей мере, двух импульсов с изменяемыми промежутками времени между импульсами и/или соотношением амплитуд импульсов в каждом цуге.

Недостатком данного способа является то, что использование активных излучающих средств - лазера демаскирует факт локации движущегося воздушного объекта.

Известен триангуляционный способ измерения дальности до объекта, в котором используется несколько пассивных оптических средств, размещенных на местности на определенном расстоянии. Измеренные значения углов наблюдения объектов в каждом пассивном канале (количество каналов не менее двух) и известное базовое расстояние между ними, путем решения треугольника, находим высоту треугольника, которая соответствует дальности до самолета Теоретические основы радиолокации. / Я.Д. Ширман, В.Н Голиков, И.Н. Бусыгин и др.; Под ред. Я.Д. Ширмана. - М.: Сов. радио, 1970. - 559 с.

Недостатком способа является необходимость использования многопозиционной системы размещения пассивных измерительных устройств.

Наиболее близким к заявляемому способу является способ, в котором при известном размере местного предмета расстояние до него определяется с помощью меток, нанесенных в поле зрения прибора, например, бинокля http://voennizdat.ru/index/0-474. Шкала меток - тысячные1 (1тысячная - угловая величина, равная 1/1000 радиана или центральному углу, опирающемуся на дугу, равную 1/6000 части окружности). Для определения дальности до объекта необходимо в тысячных измерить угол У, под которым виден предмет и используя формулу 1 по известному размеру предмета В определяется расстояние до объекта.

Д - определяемое расстояние до объекта в метрах;

В - известная высота (длина, ширина) объекта в метрах;

У - измеренная угловая величина в тысячных, под каким виден объект.

Недостатком способа является приблизительность определения дальности из-за погрешности зрительного восприятия конкретного человека.

Задачей заявляемого способа является преодоление указанных недостатков.

Техническим результатом заявляемого способа является расширение возможностей навигации движущихся объектов, в частности за счет измерения дальности до движущегося воздушного объекта пассивными локационными средствами с использованием автоматизированного вычислительного алгоритма, исключающего ошибки связанные с человеческим фактором.

Технический результат достигается за счет осуществления заявляемого способа при помощи телевизионной системы высокой четкости с формированием оптического изображения движущегося воздушного судна; преобразования полученного изображения в цифровое; вычислению по оцифрованному изображению длины изображения с учетом проекционных искажений; идентификации типа движущегося воздушного объекта с определением его фактические линейные размеры по конструктивным особенностям движущегося воздушного объекта, используя специализированную базу данных; определении дальности до движущегося воздушного объекта как произведение фокусного расстояния оптической системы на соотношение фактического линейного размера к длине изображения движущегося воздушного объекта с учетом проекционных искажений.

Сущность способа измерения дальности поясняется Фиг. 1 и Фиг. 2.

Фиг. 1. Определение угла ориентации θ траектории полета самолета по концевым точкам крыла.

Фиг. 2. Определение дальности до самолета по его изображению.

Рассмотрим заявляемый способ на примере определения дальности до самолета.

Ориентация самолета в полете относительно оптической системы не влияет на точность измерения диаметра фюзеляжа. Используется геометрическое свойство проекций цилиндра, что какой бы не была его ориентация относительно наблюдателя, всегда найдется проекция, сечение которой будет точно соответствовать его диаметру. Диаметр фюзеляжа самолета фиксированная величина и составляет для различных типов самолетов, например, Airbus - dф: 3,95; 5,64; 6,0; 7,14 м.

Определения дальности до самолета по диаметру фюзеляжа dф осуществляется по формуле:

где Do - дальность до самолета;

dи - размер изображения диаметра фюзеляжа на матрице ФПУ;

dф - диаметр фюзеляжа;

Рассмотренному способу определения дальности свойственны следующие недостатки, связанные с тем, что появляются погрешности вычисления связанные с некоторым изменением dф по длине самолета, т.к. форма фюзеляжа не является цилиндрической. Необходимость определения малого размера изображения диаметра фюзеляжа на матрице ФПУ, также вносит погрешность в определение дальности до самолета.

Размер длины фюзеляжа Lф обычно более чем на порядок больше диаметра фюзеляжа dф, что снижает погрешность определения размера изображения длины фюзеляжа Lи на матрице ФПУ по сравнению с определением размера изображения диаметра фюзеляжа на матрице ФПУ dи.

В заявляемом способе наилучшая точность измерения дальности достигается на линии наблюдения, перпендикулярной траектории полета самолета.

Определение дальности до самолета по длине фюзеляжа Lф осуществляется по формуле

где Do - дальность до самолета;

Lф - длина фюзеляжа самолета;

Lи - размер изображения длины фюзеляжа на матрице ФПУ;

f - фокусное расстояние оптической системы.

Если самолет имеет ракурс наблюдения θ>100, то необходимо восстановить истинный размер изображения по формуле:

где

Параметры а и b определяются при обработке оцифрованного изображения самолета Фиг. 1, а Lи

- размер изображения длины фюзеляжа на матрице ФПУ.

Способ осуществляется следующим образом: при помощи телевизионной системы высокой четкости формируют видеокадр изображения самолета в поле зрения оптической системы; оцифровывают изображение; измеряют размер изображения фюзеляжа самолета на матрице фотоприемного устройства и вычисляют длину изображения с учетом проекционных искажений, используя формулы 4 и 5; определяют его конструктивные особенности: число и расположение двигателей, одно или двух палубный фюзеляж и, сравнивая их с соответствующими значениями в базе данных, идентифицируют тип самолета и его модификацию; по геометрическим размерам вычисляют значение дальности до самолета по формуле (3).

Пример 1 осуществления способа для определения дальности до самолета.

На фото - приемной матрице оптико-электронного блока формируется изображение самолета. С фотоприемной матрицы сформированный видеокадр изображения оцифровывается, считываются в запоминающее устройство, и передается далее в блок обработки и измерения характеристик (деталей) изображения самолета Фиг. 1. Вертикальные и горизонтальные белые линии определяют положение самолета на матрице ФПУ.

Определяются параметры изображения необходимые для дальнейших вычислений: а=31 мм, b=45 мм, Lи=8,8 мм.

Определяется ракурс наблюдения

Производится восстановление истинного размера изображения

Сравнением соотношений линейных параметров инвариантных к масштабу: по отношению ширины фюзеляжа к его длине, по отношению размаха крыла к длине фюзеляжа самолета, по числу двигателей с данными соответствующих баз данных, осуществляют идентификацию типа самолета - A3 80-800. Информация о типе самолета поступает в блок базы метрических данных, из которого в вычислительный блок поступает значение длины и диаметра фюзеляжа самолета в метрах - Lф=73 м.

Фокусное расстояние примененной оптической системы 1,0 м, длина фюзеляжа 73,0 м. Значение дальности до самолета: D0=f*Lф/Lи,

D0=1,0*73,0/0,002208=33061 м.

Заявленный способ позволяет работу оптико-электронных локационных средств делать скрытной, так как исключает использование активных излучающих средств локации и повысить точность навигации.

Похожие патенты RU2680265C2

название год авторы номер документа
СПОСОБ ИДЕНТИФИКАЦИИ ТИПА САМОЛЕТА СРЕДСТВАМИ ПАССИВНОЙ ОПТИЧЕСКОЙ ЛОКАЦИИ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2017
  • Стучилин Александр Иванович
  • Кобан Андрей Яковлевич
  • Золотухин Валерий Константинович
  • Островский Александр Сергеевич
RU2708346C1
СПОСОБ ОПРЕДЕЛЕНИЯ СКОРОСТИ ДВИЖУЩИХСЯ ОБЪЕКТОВ МЕТОДОМ ПАССИВНОЙ ЛОКАЦИИ 2014
  • Стучилин Александр Иванович
  • Кобан Андрей Яковлевич
  • Золотухин Валерий Константинович
RU2575471C2
СПОСОБ ПАССИВНОЙ ДИСТАНЦИОННОЙ ТЕЛЕВИЗИОННОЙ ИДЕНТИФИКАЦИИ ОБЪЕКТОВ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2015
  • Стучилин Александр Иванович
  • Кобан Андрей Яковлевич
  • Золотухин Валерий Константинович
RU2603998C1
Оптико-электронный комплекс для оптического обнаружения, сопровождения и распознавания наземных и воздушных объектов 2019
  • Беговатов Александр Петрович
  • Золотухин Валерий Константинович
  • Иванов Антон Сергеевич
  • Мойсеенко Петр Григорьевич
  • Плетнёв Сергей Валерьевич
  • Стучилин Александр Иванович
RU2701177C1
Способ определения эффективной площади рассеяния воздушных объектов бортовой радиолокационной станцией 2016
  • Бекирбаев Тамерлан Османович
  • Леонов Юрий Иванович
  • Трушанов Алексей Андреевич
  • Балюра Александр Петрович
  • Евдокимов Геннадий Иванович
RU2626018C1
СПОСОБ ИЗМЕРЕНИЯ ДАЛЬНОСТИ ДО ОБЪЕКТОВ ПО ИХ ИЗОБРАЖЕНИЯМ ПРЕИМУЩЕСТВЕННО В КОСМОСЕ 2014
  • Смирнов Александр Иванович
RU2568335C1
Цифровое устройство определения пространственной ориентации воздушного объекта относительно пассивного оптико-электронного комплекса 2020
  • Иванов Антон Сергеевич
  • Кобан Андрей Яковлевич
  • Мойсеенко Петр Григорьевич
  • Стучилин Александр Иванович
RU2746088C1
Способ селекции реальных воздушных объектов на фоне помех, формируемых имитаторами вторичного излучения, за счет использования мобильного радиолокатора 2021
  • Жбанов Игорь Леонидович
  • Митрофанов Дмитрий Геннадьевич
  • Силаев Николай Владимирович
  • Еременок Сергей Анатольевич
  • Севидов Владимир Витальевич
RU2787471C1
Способ селекции имитаторов вторичного излучения воздушных объектов 2018
  • Митрофанов Дмитрий Геннадьевич
  • Силаев Николай Владимирович
  • Жбанов Игорь Леонидович
  • Тулузаков Владимир Геннадьевич
  • Богатов Кирилл Викторович
  • Кан Игорь Петрович
  • Бортовик Виталий Валерьевич
RU2694276C1
СПОСОБ ПОЛУЧЕНИЯ ИЗОБРАЖЕНИЯ ЗЕМНОЙ ПОВЕРХНОСТИ С ДВИЖУЩЕГОСЯ НОСИТЕЛЯ И УСТРОЙСТВО ДЛЯ ЕГО ОСУЩЕСТВЛЕНИЯ 2012
  • Барышников Александр Николаевич
  • Безобразов Владимир Сергеевич
  • Грибач Александр Алексеевич
  • Иванов Василий Петрович
  • Максимяк Сергей Петрович
RU2498378C1

Иллюстрации к изобретению RU 2 680 265 C2

Реферат патента 2019 года СПОСОБ ОПРЕДЕЛЕНИЯ ДАЛЬНОСТИ ДО ДВИЖУЩЕГОСЯ ВОЗДУШНОГО ОБЪЕКТА МЕТОДОМ ПАССИВНОЙ ЛОКАЦИИ

Изобретение относится к области измерения расстояний. Способ определения дальности до движущегося воздушного объекта методом пассивной локации включает получение оптического изображения движущегося воздушного объекта; преобразование полученного изображение в цифровое; распознавание изображения по оцифрованному изображению, определение параметров изображения с учетом проекционных искажений; определение дальности до движущегося объекта как произведение фокусного расстояния оптической системы на соотношение фактического линейного размера к длине изображения движущегося воздушного объекта с учетом проекционных искажений. Для получения оптического изображения используют телевизионную систему высокой четкости, причем учет проекционных искажений ведется с использованием значения ракурса вычисляемого как арктангенс отношения размеров вертикальной к горизонтальной проекции линии, соединяющей концы крыльев, а фактические линейные размеры движущегося воздушного объекта определяют путем идентификации его типа по конструктивным особенностям его изображения и использования специализированной базы данных. Технический результат заключается в расширении возможностей навигации движущихся объектов за счет измерения дальности до движущегося воздушного объекта пассивными локационными средствами с использованием автоматизированного вычислительного алгоритма, исключающего ошибки, связанные с человеческим фактором. 2 ил.

Формула изобретения RU 2 680 265 C2

Способ определения дальности до движущегося воздушного объекта методом пассивной локации, включающий получение оптического изображения движущегося воздушного объекта; преобразование полученного изображение в цифровое; распознавание изображения по оцифрованному изображению, определение параметров изображения с учетом проекционных искажений; определение дальности до движущегося объекта как произведение фокусного расстояния оптической системы на соотношение фактического линейного размера к длине изображения движущегося воздушного объекта с учетом проекционных искажений, отличающийся тем, что для получения оптического изображения используют телевизионную систему высокой четкости, причем учет проекционных искажений ведется с использованием значения ракурса вычисляемого как арктангенс отношения размеров вертикальной к горизонтальной проекции линии, соединяющей концы крыльев, а фактические линейные размеры движущегося воздушного объекта определяют путем идентификации его типа по конструктивным особенностям его изображения и использования специализированной базы данных.

Документы, цитированные в отчете о поиске Патент 2019 года RU2680265C2

СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ДО ОБЪЕКТА ПРИ ПОМОЩИ ОПТИЧЕСКОГО ПРИБОРА 1992
  • Литвин Михаил Михайлович[Ua]
  • Одегов Владимир Васильевич[Ua]
  • Елманов Сергей Александрович[Ua]
RU2095756C1
СПОСОБ ОПРЕДЕЛЕНИЯ РАССТОЯНИЯ ОТ ВИДЕОКАМЕРЫ ИЗМЕРИТЕЛЯ СКОРОСТИ ДО ТРАНСПОРТНОГО СРЕДСТВА (ВАРИАНТЫ) 2011
  • Зарубин Юрий Леонидович
  • Убоженко Николай Витальевич
  • Вовк Максим Анатольевич
RU2470376C2
Стабилизатор постоянного напряжения с защитой от перегрузки 1982
  • Рапп Юрий Анатольевич
  • Ходаковский Евгений Алексеевич
SU1096626A1
Лазарев Л.П., Оптико-электронные приборы наведения
- М.: Машиностроение, 1989.

RU 2 680 265 C2

Авторы

Стучилин Александр Иванович

Чернявский Венедикт Викторович

Мойсеенко Петр Григорьевич

Золотухин Валерий Константинович

Даты

2019-02-19Публикация

2016-06-30Подача